首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   2篇
  国内免费   50篇
安全科学   4篇
废物处理   4篇
环保管理   58篇
综合类   140篇
基础理论   44篇
污染及防治   81篇
评价与监测   22篇
社会与环境   4篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   8篇
  2019年   9篇
  2018年   8篇
  2017年   8篇
  2016年   12篇
  2015年   16篇
  2014年   20篇
  2013年   20篇
  2012年   9篇
  2011年   42篇
  2010年   18篇
  2009年   20篇
  2008年   29篇
  2007年   18篇
  2006年   18篇
  2005年   8篇
  2004年   4篇
  2003年   15篇
  2002年   14篇
  2001年   9篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
排序方式: 共有357条查询结果,搜索用时 15 毫秒
151.
Water quality in rivers is vital to humans and to maintenance of biotic and ecological integrity.During the Four Major Rivers restoration of South Korea, remarkable attempts have been made to decrease external nutrient loads and moveable weirs were designed to discharge silt that may deposit in pools. However, recently eutrophication of the Nakdong River, which was limited to the lower reaches, is seen to be spreading upstream. The reduction of external nutrient loads to rivers is a long-term goal that is unlikely to lead to reductions in algal blooms for many years because of the time required to implement effective land management strategies. It would therefore be desirable to implement complementary strategies. Regulating the amount of water released is effective at preventing algae blooms in weir pools; so, the relationship between discharge, stratification and bloom formation should be understood in this regard. However, pollutants are likely to accumulate in the riverbed upstream from release points. Thus, to control phosphorus levels, total phosphorus density should be lowered by applying in-river techniques as well. As many ecosystem properties are controlled by multiple processes, simultaneous river bottom improvement techniques, such as combined dissolved oxygen supply and nutrient inactivation, are likely to be effective. The purpose of this review is to present a series of technological approaches that can be used to improve the river bottom area and hence sediment nutrient release, and to illustrate the application of these techniques to the Nakdong River.  相似文献   
152.
Atmospheric deposition of nutrients within agricultural watersheds has received scant attention and is poorly understood compared to nutrient transport in surface and subsurface water flow pathways. Thus, we determined the deposition of phosphorus (P), nitrogen (N), and sediment in a mixed land use watershed in south-central Pennsylvania (39.5 ha; 50% corn–wheat–soybean rotation, 20% pasture, and 30% woodland), in comparison with stream loads at several locations along its reach between 2004 and 2006. There was a significant difference in deposition rates among land uses (P < 0.05) with more P and N deposited on cropland (1.93 kg P and 10.71 kg N ha−1 yr−1) than pasture (1.10 kg P and 8.06 kg N ha−1 yr−1) and woodland (0.36 and 2.33 kg N ha−1 yr−1). Although not significant, sediment showed the same trends among land uses. A significant relationship was found between P in deposition and P in soil <10-m away from the samplers suggesting much of the deposited sample was derived from local soil. Samplers adjacent to the stream channel showed deposition rates (1.64 kg P and 8.83 kg N ha−1 yr−1) similar to those on cropland. However, accounting for the surface area of the stream, direct deposition of P, N, and sediment probably accounted for <3% of P and <1% of N and sediment load in stream flow from the watershed (1.41 kg P, 27.09 kg N, and 1343 kg sediment ha−1 yr−1 at the outlet). This suggests that strategies to mitigate nutrient and sediment loss in this mixed-land use watershed should focus on runoff pathways.  相似文献   
153.
The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass–abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to all users.  相似文献   
154.
Phosphorus ( P ) in sediments plays an important role in shallow lake ecosystems and has a major effect on the lake environment. The mobility and bioavailability of P primarily depend on the contents of different P forms, which in turn depend on the sedimentary environment.Here, sediment samples from Baiyangdian (BYD) lake were collected and measured by the Standards, Measurements, and Testing procedure and Phosphorus-31 nuclear magnetic resonance spectroscopy (31P NMR) to characterize different P forms and their relationships with sediment physicochemical properties. The P content in the sediments varied in different areas and had haracteristics indicative of exogenous river input. Inorganic P (334–916 mg/kg) was the dominant form of P . The 31P NMR results demonstrated that orthophosphate monoesters (16–110 mg/kg), which may be a source of P when redox conditions change, was the dominant form of organic P (20–305 mg/kg). The distribution of P forms in each region varied greatly because of the effects of anthropogenic activities, and the regions affected by exogenous river input had a higher content of P and a higher risk of P release. Principal component analysis indicated that P bound to Fe, Al, and Mn oxides and hydroxides (NaOH-P) and organic P were mainly derived from industrial and agricultural pollution, respectively. Redundancy analysis indicated that increases in pH lead to the release of NaOH-P. Organic matter plays an important role in the organic P biogeochemical cycle, as it acts as a sink and source of organic P .  相似文献   
155.
SBR除磷系统中的积磷细菌   总被引:8,自引:0,他引:8  
考察了SBR生物除磷工艺模型中活性污泥的微生物组成及其在该除磷系统中的功能。结果表明,该模型中分离到的微生物有假单胞菌属,气单胞菌属,莫拉低菌属,棒状菌群和肠杆菌科的细菌,优势菌为假单胞菌。其中其中起除磷作用的主要是假单胞菌属和莫拉氏菌属的细菌,气单菌主要起发酵产酸作用。  相似文献   
156.
太湖氮磷浓度与水质因子的关系   总被引:4,自引:2,他引:4  
在2003年10月27、28日和2004年8月19日的太湖水质试验数据基础上,研究与探讨了氮浓度、磷浓度与叶绿素a浓度、悬浮物浓度和CDOM(Colored Dissolved Organic Matter)浓度之间的定量关系。研究结果表明:①在2003年10月份和2004年8月份,太湖梅梁湾地区水体的氮、磷浓度介于1~4mg/L和0.1~0.3mg/L,该浓度恰好处于易发生水华的营养物质浓度供应区间;②与2004年8月19日相比,2003年10月27、28日的太湖藻类处于低增长、高消亡状态;③在太湖梅梁湾地区,氮、磷浓度与CDOM浓度、叶绿素a浓度和悬浮物浓度之间存在较强的线性相关性,其相关系数大于0.557;④在太湖水体中,磷浓度、CDOM浓度、叶绿素a浓度和悬浮物浓度的四因子关系模型比氮浓度、CDOM浓度、叶绿素a浓度和悬浮物浓度的四因子关系模型的相关系数高。  相似文献   
157.
The dwindling global reserves of extractable phosphorus (P) and its growing demand to produce the required food for a burgeoning global population (the global P crisis) necessitate the sustainable use of this crucial resource. To advert the crisis requires informed policy decisions which can only be obtained by a better understanding of the nature and magnitude of P flow through different systems at different geographical scales. Through a systematic and in-depth review of twenty one recent substance flow analyses of P, we have assessed the key P inflows, outflows, stocks, internal flows, and recycling flows at the city, regional, and country scales. The assessment has revealed, the main inflow and outflow of P at the city scale occurs through food and wastewater respectively, while the main stock of P occurs in landfill. At the regional scale, mineral ore is the main P inflow and chemical P fertilizer is the main outflow particularly in the regions that have P fertilizer production sector. In contrast, either chemical P fertilizer or animal feed is the key inflow and either food and agricultural products or soil losses (erosion, runoff, and/or leaching) is the major outflow especially in the regions without P fertilizer production sector. At the country scale, the key P inflow occurs either through mineral ore or chemical P fertilizer and the key outflow takes place either as food and agricultural products, waste (both solid and liquid), or soil losses (erosion, runoff, and/or leaching). The main stock of P both at the regional and country scales occurs in the soil of the agricultural production sector. As identified in this assessment, the key unproductive outflows and stocks at different geographical scales indicate that there is a potential scope to improve P management through the increased P recovery and recycling, and by the utilization of available soil P stocks. In many of the studies at all the geographical scales, P recycling flow has been found to be less than 20% of the total inflow, and even in some studies at the country scale, P recycling has been found to be entirely absent, which is a clear indication of poor P management. This study has also identified, there is a clear knowledge gap in relation to understanding the P flow over multiple years at the regional scale. The information about the key flows and stocks at different geographical scales as we identified can be utilized to make better P policy and management decisions for a city, region, or country. The information can also be used to guide future research that aims to analyze P flow at the city, regional, and country scales.  相似文献   
158.
The effects of chemophytostabilization practices on arbuscular mycorrhiza (AM) of Deschampsia cespitosa roots at different depths in soils highly contaminated with heavy metals were studied in field trials. Mycorrhizal parameters, including frequency of mycorrhization, intensity of root cortex colonization and arbuscule abundance were studied. Correlations between concentration of bioavailable Cd, Zn, Pb and Cu in soil and mycorrhizal parameters were estimated. An increase in AM colonization with increasing soil depth was observed in soils with spontaneously growing D. cespitosa. A positive effect of chemophytostabilization amendments (calcium phosphate, lignite) on AM colonization was found in the soil layers to which the amendments were applied. Negative correlation coefficients between mycorrhizal parameters and concentration of bioavailable Cd and Zn in soil were obtained. Our results demonstrated that chemophytostabilization practices enhance AM colonization in D. cespitosa roots, even in soils fertilized with high rates of phosphorus.  相似文献   
159.
Water requirements to supply human needs lead water stakeholders to store more water during surplus periods to fulfil the demand during – not only – scarcity periods. At the reservoirs, mostly those in semi-arid regions, water level then fluctuates extremely between rises and downward during one single year. Besides of water management implications, changes on physical, chemical and biological dynamics of these drawdown and refilling are little known yet. This paper shows the results, throughout a year, on solids, nutrients (N and P), chlorophyll-a, and sedimentation changes on the dynamics, when the former policy was applied in a reservoir from the semi-arid Northwestern Mexico. Water level sinusoidal trend impinged changes on thermal stratification and mixing, modifying nutrient cycling and primary producer responses. According to nitrogen and phosphorus concentration as well as chlorophyll-a, reservoir was mesotrophic, becoming hypertrophic during drawdown. Nutrient concentrations were high (1.22 ± 0.70 and 0.14 ± 0.12 mg P l−1), increasing phosphorus and lowering N:P significantly throughout the study period, although no intensive agricultural, no urban development, neither industrial activities take place in the watershed. This suggests nutrient recycling complex mechanisms, including nutrient release from the sediment–water interface as the main nutrient pathway when shallowness, at the same time as mineralization, increases. Outflows controlled nitrogen and phosphorus availability on the ecosystem while organic matter depended on river inflows. As on other subtropical aquatic ecosystems, nitrogen limited primary productivity (Spearman correlation R = 0.75) but chlorophyll-a seasonal pattern showed an irregular trend, prompting other no-nutrient related limitants. Shallowness induced a homogeneous temporal pattern on water quality. This observed temporal variability was mainly explained statistically by changes on solids (mineral and organic), chlorophyll-a and flows (62.3%). Annual sedimentation rates of total solids ranged from 11.73 to 16.29 kg m−2 year−1 with organic matter comprising around 30%. N:P ratio on sedimentation rates were as high as could be expected in a resuspension dominated ecosystem, and spatially inverse related with N:P ratio on bottom sediments. Distance from river inlet into the reservoir reveals a marked spatial heterogeneity on solid and nitrogen sedimentation, showing the system dependence on river inflows and supporting resuspension as the main phosphorus pathway. Accretion rates (2.19 ± 0.40 cm year−1) were not related to hydrological variability but decreased with the distance to the river input. Total sediment accumulation (9,895 tons km−2 year−1) denotes siltation as other serious environmental problem in reservoirs but possibly not related with operational procedures.  相似文献   
160.
通过2017年1月—2018年7月在坡豪湖布设11个采样点,监测TN、TP等8项水质指标,并运用综合水质标识指数法、综合营养指数法分析该湖的综合水质级别及营养状态.结果表明:坡豪湖综合水质标识指数为2.610,综合水质评价级别为Ⅱ类,总体水质良好.坡豪湖综合营养指数为44.90,为中营养状态,坡豪湖营养状态程度受限于T...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号