首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   2篇
  国内免费   50篇
安全科学   4篇
废物处理   4篇
环保管理   58篇
综合类   140篇
基础理论   44篇
污染及防治   81篇
评价与监测   22篇
社会与环境   4篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   8篇
  2019年   9篇
  2018年   8篇
  2017年   8篇
  2016年   12篇
  2015年   16篇
  2014年   20篇
  2013年   20篇
  2012年   9篇
  2011年   42篇
  2010年   18篇
  2009年   20篇
  2008年   29篇
  2007年   18篇
  2006年   18篇
  2005年   8篇
  2004年   4篇
  2003年   15篇
  2002年   14篇
  2001年   9篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
排序方式: 共有357条查询结果,搜索用时 531 毫秒
31.
Water quality in rivers is vital to humans and to maintenance of biotic and ecological integrity. During the Four Major Rivers restoration of South Korea, remarkable attempts have been made to decrease external nutrient loads and moveable weirs were designed to discharge silt that may deposit in pools. However, recently eutrophication of the Nakdong River, which was limited to the lower reaches, is seen to be spreading upstream. The reduction of external nutrient loads to rivers is a long-term goal that is unlikely to lead to reductions in algal blooms for many years because of the time required to implement effective land management strategies. It would therefore be desirable to implement complementary strategies. Regulating the amount of water released is effective at preventing algae blooms in weir pools; so, the relationship between discharge, stratification and bloom formation should be understood in this regard. However, pollutants are likely to accumulate in the riverbed upstream from release points. Thus, to control phosphorus levels, total phosphorus density should be lowered by applying in-river techniques as well. As many ecosystem properties are controlled by multiple processes, simultaneous river bottom improvement techniques, such as combined dissolved oxygen supply and nutrient inactivation, are likely to be effective. The purpose of this review is to present a series of technological approaches that can be used to improve the river bottom area and hence sediment nutrient release, and to illustrate the application of these techniques to the Nakdong River.  相似文献   
32.
Shortage in phosphorus (P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultural fertilizer is a preferred process. This work aims to develop a calcium and magnesium loaded biochar (Ca–Mg/biochar) application for P recovery from biogas fermentation liquid. The physico-chemical characterization, adsorption efficiency, adsorption selectivity, and postsorption availability of Ca-Mg/biochar were investigated. The synthesized Ca–Mg/biochar was rich in organic functional groups and in CaO and MgO nanoparticles. With the increase in synthesis temperature, the yield decreased, C content increased, H content decreased, N content remained the same basically, and BET surface area increased. The P adsorption of Ca–Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360 min. The process was endothermic, spontaneous, and showed an increase in the disorder of the solid–liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63 mg/g. The P adsorption selectivity of Ca–Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles of Ca–Mg/biochar could reduce the negative interaction effects of coexisting ions. The P releasing amounts of postsorption Ca–Mg/biochar were in the order of Ca–Mg/B600 > Ca–Mg/B450 > Ca–Mg/B300. Results revealed that postsorption Ca–Mg/biochar can continually release P and is more suitable for an acid environment.  相似文献   
33.
Our study sought to assess how much phosphorus (P) runoff from paddy fields could be cut down by fertilizer management and inoculation with arbuscular mycorrhizal fungi. A field experiment was conducted in Lalin River basin, in the northeast China: six nitrogen–phosphorus–potassium fertilizer levels were provided (0, 20%, 40%, 60%, 80%, and 100% of the recommended fertilizer supply), with or without inoculation with Glomus mosseae. The volume and concentrations of particle P (PP) and dissolved P (DP) were measured for each runoff during the rice growing season. It was found that the seasonal P runoff, including DP and PP, under the local fertilization was 3.7 kg/ha, with PP, rather than DP, being the main form of P in runoff water. Additionally, the seasonal P runoff dropped only by 8.9% when fertilization decreased by 20%; rice yields decreased with declining fertilization. We also found that inoculation increased rice yields and decreased P runoff at each fertilizer level and these effects were lower under higher fertilization. Conclusively, while rice yields were guaranteed arbuscular mycorrhizal inoculation and fertilizer management would play a key role in reducing P runoff from paddy fields.  相似文献   
34.
In order to find effective measures to control diatom blooms, a better understanding of the physiological characteristics of nutrient uptake in diatoms is needed. A study of P and Si-uptake kinetics for diatom species from two light regimes was conducted at low (LL), moderate (ML) and high light intensities (HL) (2, 25 and 80 μmol photons/(m2·sec)), respectively. The results showed that P uptake of diatoms was heavily influenced by historic light regimes. P affinity changed with growth and photosynthetic activity. The lowest half saturation constant for P uptake (Km(P)) was under HL for high-light adapted diatoms while the lowest half-saturation constant for low-light adapted diatoms was observed under LL. The Si half-saturation constant (Km(Si)) increased with increasing light intensities for pennate diatoms but decreased for centric diatoms. Diatom volumes were correlated with the maximum Si uptake rates (Vm(Si)) at HL and Km(Si) at ML and HL for six diatom species. Our results imply that when we assess the development of diatom blooms we should consider light intensity and cell volume in addition to ambient Si or P concentration. The relationship between light intensity and P-uptake suggests that we can find suitable methods to control diatom blooms on the basis of reducing phytoplankton activity of P-uptake and photosynthesis simultaneously.  相似文献   
35.
The rapid increase of phosphorus (P) use in farming has raised concerns regarding its conservation and environmental impact. Increasing the P use efficiency (PUE) is an approach to mitigating these adverse impacts. In this study, we applied substance flow analysis (SFA) to establish a life-cycle P use efficiency model to determine the life-cycle PUE of the farming system used in Anhui Province in 2011, which is typical of the agriculture practiced in central China. Based on this model, the P flows and PUEs of five subsystems were identified and quantified: crop farming, crop processing, livestock breeding, rural living, and urban living. The three largest P flows were found in the crop farming and livestock breeding subsystems; it can therefore be concluded that these subsystems have substantial impacts on the entire farming system. In contrast, the PUEs of crop farming, rural consumption, and livestock breeding subsystems presented the three lowest PUEs (58.79%, 71.75%, and 76.65%, respectively). These results were also consistent with the finding that the greatest P losses occurred in crop farming and livestock breeding. Consequently, the study proposes that great potential exists for increasing PUEs in the farming system of Anhui, and several of the most promising measures could be combined for improving PUEs. Finally, the study assesses data quality and presents a sensitivity analysis for use in interpreting the results. The study also shows that improving PUE and decreasing P losses in farming systems through improved nutrient management must be considered an important issue, and this study represents valuable experience in resource conservation and agricultural development in China.  相似文献   
36.
Heterotrophic cultivation caused high level of ROS and high lipids accumulation. HMTC is the best culture strategy for improving the microalgal biomass. Chlorella sp. HQ had great nutrient removal capacity under five culture strategies. The effects of cultivation strategies (including autotrophic cultivation (AC), heterotrophic cultivation (HC), fed-batch cultivation (FC), heterotrophic+ autotrophic two-stage cultivation (HATC), and heterotrophic+ mixotrophic two-stage cultivation (HMTC)) on the growth and lipid accumulation of Chlorella sp. HQ and its total nitrogen (TN) and total phosphorus (TP) removal in secondary effluent were investigated in column photoreactors. The results showed that the TN and TP removal rates ranged between 93.72%–95.82% and 92.73%–100%, respectively, under the five different strategies. The microalgal growth potential evaluated by the maximal growth rate (Rmax) was in the order of HMTC>HC>FC>AC>HATC. The values of biomass, total lipid yield, triacylglycerols (TAGs) yield, and total lipid content of the microalga cultivated in the last 5 d increased significantly, but the TAGs productivities of the five strategies were lower than those in the first 7 d. Compared with all the other cultivation strategies, the TAGs productivity and yield after 12 d of cultivation under the heterotrophic condition reached the highest values accompanying the highest level of intracellular reactive oxygen species (ROS), in which the TAGs yield reached 40.81 mg/L at the end of the cultivation period. The peaks in TAGs yield and ROS level suggested that HC was beneficial for lipids accumulation via regulating the cellular redox status and exerting ROS stress on microalgal cells. In summary, HMTC was the best cultivation strategy for improving the microalgal biomass and HC was the best strategy for microalgal TAGs accumulation to produce biodiesel.  相似文献   
37.
本试验利用~(32)P示踪法研究赤红壤上两种有机物料与过磷酸钙混合施用对磷有效性的影响。盆栽试验表明,纸厂废料蔗渣或猪粪与磷肥混合施用比磷肥单独施用更有利于提高格拉姆柱花草的含磷量和总吸磷量。单位施磷量引起的土壤有效磷和植株吸磷量的增加量也是有机物料单施或与磷肥混施高于磷肥单施。在前39d,~(32)P标记过磷酸钙的利用率在单独施用时为2.14%,比混合施用高一倍左右;在80d时,混合施用的磷利用率较快提高,蔗渣与磷肥混施处理超过单独施用,达22.88%。  相似文献   
38.
The encroachment of some tall grass species in open dune vegetation, as observed in a Dutch dry dune area, is considered unfavourable from a conservation viewpoint. This paper investigates differences in vegetation and soil properties between grass-dominated and still existing open dune grassland plots at four locations along the coast. Soil properties studied include nitrogen and phosphorus pools and nitrogen availability by mineralization. Vegetation properties included are above and below-ground biomass and nitrogen and phosphorus concentrations in above-ground biomass. Systematic differences in N-pools between grass-dominated and open dune grassland plots were not observed. However, N-availability by mineralization and its turnover rates are higher in grass-dominated plots than in open dune grassland plots, as well as above and below-ground biomass. In open dune grassland plots, atmospheric N-input is an important source of N, whereas in grass-dominated plots mineralization largely exceeds atmospheric N-input. However, these observations do not explain the mosaic-like vegetation pattern. Grazing intensity is most likely the determinant factor in the dry dune system. It is concluded, that grass encroachment is probably triggered by atmospheric deposition and is enhanced by positive feedbacks in the N-cycle. The relevance of these results for restoration management is briefly discussed.  相似文献   
39.
Phosphorus (P) is critically needed to improve soil fertility in many parts of the world. The use of water-soluble P fertilizers, e.g., single super-phosphate and triple super-phosphate in developing countries to improve crop production has been limited primarily by their high cost. The presence of indigenous phosphate deposits in some countries provides an incentive for direct application or local chemical treatment at low cost to improve the solubility of low reactive phosphate rocks (PRs). The use of naturally occurring low-molecular weight organic acids (LMWOAs) that are produced in soil as microbial metabolites or plant exudates from dead or living cells represents a new perspective in PR research. The LMWOAs contain various functional groups that may play a significant role in PR dissolution. Little information is available, however, about the potential of LMWOAs in releasing P from PRs. This study reports P release from 12 PRs, four each of low, medium, and high reactivity, obtained from various deposits (Kodjari, Tahoua, North Carolina, Gafsa, Khouribga, Tilemsi Valley, Central Florida, Sechura, Minjingu, North Florida, Hahotoe, and Parc W) using nine LMWOAs containing mono-, di-, and tri-carboxylic groups and a mineral acid (H2SO4). Laboratory studies showed that the organic acids are effective in releasing P from low and medium reactive PRs, but very ineffective in releasing P from high reactive PRs. The average amounts of P released by all the organic acids from the three types of PRs were 65.5 mmol kg−1 PR from the low reactive PRs, 55.1 mmol kg−1 from the medium, and 11.1 mmol kg−1 from the high; those released from across all the PRs were 21.9 by the mono-carboxylic acid group, 54.2 by the di-carboxylic acid group, and 57.0 mmol P kg−1 by the tri-carboxylic acid group. The P released was negatively correlated with the equilibrium pH, but positively correlated with Ca released from the PRs. Laboratory incubation studies on the release of P from PRs added to soils with or without organic acids and incubated at 25 °C for 15, 30, and 45 days showed that the percentage of plant-available P released varied considerably from 0.95 in the Kodjari PR to 40.1% in the North Carolina PR and was related to PR reactivity. A greenhouse study with corn (Zea mays L.) grown for 60 days on soils treated with PRs or with PRs mixed with organic acids showed that corn response to addition of oxalic or citric acid varied with P rates and PR sources, suggesting that organic acids have potential as amendments for increasing plant-available P in PR-treated soils.  相似文献   
40.
雨后入湖溪流磷污染对西湖的影响及其对策   总被引:6,自引:1,他引:6  
入湖径流是西湖磷的最主要污染源,尤其是暴雨后径流的磷污染最严重,梅雨(2001年)和台风雨后径流的磷净输入为1.77t,约占西湖全年磷总沉积量的42.5%。西湖流域内土壤表土的磷含量约是母土的两倍。西湖流域内土壤表土富磷和暴雨的冲刷和淋溶是导致雨后径流磷浓度提高的主要原因。提出了几种减小和消除径流磷污染的几种方案,通过分析比较,建渠排暴雨后径流水到钱塘江是比较彻底的消除径流磷污染的措施。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号