首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   4篇
  国内免费   7篇
安全科学   91篇
废物处理   4篇
环保管理   18篇
综合类   31篇
基础理论   1篇
污染及防治   4篇
评价与监测   5篇
灾害及防治   1篇
  2023年   6篇
  2022年   2篇
  2021年   15篇
  2020年   9篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   9篇
  2014年   10篇
  2013年   11篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   7篇
  2002年   1篇
  2001年   5篇
  2000年   5篇
  1999年   9篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   6篇
  1993年   1篇
  1992年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
21.
22.
分析了压力容器事故的主要原因 ,介绍了劳动安全监察制度 ,研究了该制度对减少压力容器事故所起的作用 ,为预防压力容器事故 ,对劳动安全监察制度的发展 ,提出了自己的见解与看法。  相似文献   
23.
提出了一种联合上限法(Upper Bound Method)和主应力法(Slab Method)确定模具与金属接触表面压力分布的方法.这是一种基于利用上限法确定金属流动和变形区,然后根据主应力法原理计算接触面压力分布的方法,简称UBM/SM联合法.这种方法较其它方法简便,而且能给出计算压力分布的解析式.本文阐述该法的基本原理,并用它计算杯形件反挤时凸凹模表面的压力分布.  相似文献   
24.
本文根据前文所提联合上限法和主应力法确定模具表面压力分布的基础原理,计算了圆柱坯料正挤压和十字头锻件镦挤时模具表面的压力分布,所得结果与测定值很吻合,进一步证明了UBM/SM法实际应用的可靠性.  相似文献   
25.
叙述了GY-IB光纤液位计的工作原理,介绍了人工检测和计量测试研究所的测试情况,分析了该光纤液位计存在的不足和推广应用前景.  相似文献   
26.
主要介绍一种新型汽车消声器生产设备——TC1000型简体成形机的结构、原理、特点以及主要工作零部件的设计技术.  相似文献   
27.
This study investigates the effect of the ignition position on vented hydrogen-air deflagration in a 1 m3 vessel and evaluates the performance of the commercial computational fluid dynamics (CFD) code FLACS in simulating the vented explosion of hydrogen-air mixtures. First, the differences in the measured pressure-time histories for various ignition locations are presented, and the mechanisms responsible for the generation of different pressure peaks are explained, along with the flame behavior. Secondly, the CFD software FLACS is assessed against the experimental data. The characteristic phenomena of vented explosion are observed for hydrogen-air mixtures ignited at different ignition positions, such as Helmholtz oscillation for front ignition, the interaction between external explosion and combustion inside the vessel for central ignition, and the wall effect for back-wall ignition. Flame-acoustic interaction are observed in all cases, particularly in those of front ignition and very lean hydrogen-air mixtures. The predicted flame behavior agree well with the experimental data in general while the simulated maximum overpressures are larger than the experimental values by a factor of 1.5–2, which is conservative then would lead to a safe design of explosion panels for instance. Not only the flame development during the deflagration was well-simulated for the different ignition locations, but also the correspondence between the pressure transients and flame behavior was also accurately calculated. The comparison of the predicted results with the experimental data shows the performance of FLACS to model vented mixtures of hydrogen with air ignited in a lab scale vessel. However, the experimental scale is often smaller than that used in practical scenarios, such as hydrogen refueling installations. Thus, future large-scale experiments are necessary to assess the performance of FLACS in practical use.  相似文献   
28.
Explosion parameters for closed flameproof apparatus are changed when apertures like gap (e.g. push button) and porous structures (breathing element) are introduced on the cover or wall of the flameproof enclosures. Similarly, an interconnecting tube between two enclosures, results in significant change in explosion parameters. It is observed that the maximum explosion pressure, maximum rate of pressure rise and severity index are higher for enclosures with apertures on cover or body than that of enclosures without apertures. In case of two interconnected identical enclosures, the explosion parameters are increased in the secondary enclosure and higher than that of primary enclosure and also of isolated enclosure.  相似文献   
29.
A study of explosions in several elongated cylindrical vessels with length to diameter L/D = 2.4–20.7 and ignition at vessel's bottom is reported. Ethylene–air mixtures with variable concentration between 3.0 and 10.0 vol% and pressures between 0.30 and 1.80 bara were experimentally investigated at ambient initial temperature. For the whole range of ethylene concentration, several characteristic stages of flame propagation were observed. The height and rate of pressure rise in these stages were found to depend on ethylene concentration, on volume and asymmetry ratio L/D of each vessel. High rates of pressure rise were found in the early stage; in later stages lower rates of pressure rise were observed due to the increase of heat losses. The peak explosion pressures and the maximum rates of pressure rise differ strongly from those measured in centrally ignited explosions, in all examined vessels. In elongated vessels, smooth p(t) records have been obtained for the explosions of lean C2H4–air mixtures. In stoichiometric and rich mixtures, pressure oscillations appear even at initial pressures below ambient, resulting in significant overpressures as compared to compact vessels. In the stoichiometric mixture, the frequency of the oscillations was close to the fundamental characteristic frequency of the tube.  相似文献   
30.
Ultrasonication (US), which creates hydro-mechanical shear forces in cavitation, is an advanced technology in sludge pretreatment. However, there are many factors affecting the efficacy of cavitation and ultrasonication disintegration of sludge as a consequence. The objective of this work is to present an extensive review of evaluation approaches of sludge US pretreatment efficiency. Besides, optimization methodologies of related parameters, the differences of optimum values and the similarities of affecting trends on cavitation and sludge pretreatment efficiency were specifically pointed out, including ambient conditions, ultrasonic properties, and sludge characteristics. The research is a prerequisite for optimization of sludge US pretreatment efficiency in lab-scale and practical application. There is not-yet a comprehensive method to evaluate the efficiency of sludge US pretreatment, but some main parameters commonly used for this purpose are degree of sludge disintegration, proteins, particle size reduction, etc. Regarding US parameters, power input PUS, intensity IUS, and frequency FS seem to have significant effects. However, the magnitude of the effect of PUS and probe size in terms of IUS has not been clearly detailed. Investigating very low FS seems interesting but has not yet been taken into consideration. In addition, static pressure effect has been marginally studied only and investigation on the effect of pH prior to US process has been restricted. Their effects therefore should be varied separately and simultaneously with other related parameters, i.e. process conditions, ultrasonic properties, and sludge characteristics, to optimize sludge US pretreatment process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号