首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   1篇
  国内免费   1篇
安全科学   8篇
废物处理   8篇
环保管理   9篇
综合类   24篇
基础理论   4篇
污染及防治   19篇
评价与监测   1篇
社会与环境   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2013年   8篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2009年   5篇
  2008年   1篇
  2007年   8篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1998年   4篇
  1997年   3篇
  1994年   2篇
排序方式: 共有74条查询结果,搜索用时 281 毫秒
51.
钻井废液的超临界水氧化处理及动力学分析   总被引:2,自引:0,他引:2  
在反应温度为500~600℃、压力为25~30 MPa、停留时间为30~600 s的条件下,在连续式反应器中研究了钻井废液的超临界水氧化反应.结果表明:钻井废液的COD去除率可达90.00%以上;在600℃、停留时间为600 s时,钻井废液氧化后,剩余收集液的COD<120 mg/L,满足《污水综合排放标准》(GB 8978-1996)中的二级标准.用幂函数方程描述了氧化剂过量时钻井废液超临界水氧化的反应动力学规律,反应速率常数与温度的关系符合Arrhenius公式,随停留时间的增加、温度的升高,有机物的去除率显著增加;反应速率常数随压力升高而增加,但反应速率常数的增幅随压力的升高而减小,反应活化体积不是常数.在25 MPa时,反应活化能和频率因子分别为(17 745.430 40±1 114.983 42)kJ/mol和1.152 3×10-4s-1模型计算值与实验值的误差在±15%以内.  相似文献   
52.
用H2O2作为氧化剂,在595~704 K、18~30 MPa条件下,对活性染料废水进行超临界水氧化反应.实验结果表明,COD去除率随温度、压力、停留时间和氧化剂量的增加而上升,在704 K、28 MPa时,COD去除率可达到98.4%,停留时间小于35 s.COD、H2O2和水的反应级数分别为1、0和0;反应活化能Ea为37.21 kJ/mol;指前因子A为76.69 s-1.  相似文献   
53.
To develop a new method for the chemical recycling of plastics, we examined the formation of recycled polymers from the recovered monomeric materials of solubilized waste fiber-reinforced plastics (FRP) under supercritical alcoholic conditions. Treatment of waste FRP with supercritical MeOH resulted in the formation of monomeric organic compounds that mainly contained dimethyl phthalate (DMP) and propylene glycol. The presence of these materials was confirmed by gas chromatography and nuclear magnetic resonance analyses and they were mixed with new DMP and glycols in various ratios to form unsaturated polyesters. The polymerization progressed successfully for all mixing ratios of the recovered and new DMP. Hardness tests on these recycled polymers indicated that the polymer made from a 1:1 mixture of recovered and new dimethyl phthalate had almost the same level of hardness as the polymers made from new materials. We also examined the formation of recycled FRP by using glass fibers and monomeric materials recovered through the present depolymerization method. Chemical Feedstock Recycling & Other Innovative Recycling Techniques 6  相似文献   
54.
Extractions of volatile organic compounds (VOC’s) in contaminated soil from petroleum site were performed with supercritical carbon dioxide at different temperatures, pressures, extraction times, solvent flow rates, soil moisture contents and soil acidity. Three soil systems were investigated in order to compare the best parameters for extraction. A central composite rotatable design has been used to evaluate the influence of operation conditions on the extraction efficiency to generate model equations representing the types of soil. The results indicate that at least 70-80% of the initial amount of VOC’s can be removed at moderate temperatures even at very high moisture content. Supercritical extraction is best suited to silt type soils which have a low adsorption capacity. VOC’s recoveries from the artificial contaminated soil samples were higher in comparison with real contaminated soils. At moderate temperatures, the extraction efficiency for real soils is low because pollutants bind strongly to the soil.  相似文献   
55.
Liao W  Liu HW  Chen HJ  Chang WY  Chiu KH  Wai CM 《Chemosphere》2011,82(4):573-580
Catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) with up to four fused benzene rings over high-density-polyethylene-stabilized palladium nanoparticles in supercritical carbon dioxide via in situ UV/Vis spectroscopy is presented. PAHs can be efficiently converted to saturated polycyclic hydrocarbons using this green technique under mild conditions at 20 MPa of CO2 containing 1 MPa of H2 at 40-50 °C. Kinetic studies based on in situ UV/Vis spectra of the CO2 phase reveal that the initial hydrogenation of a given PAH and the subsequent hydrogenations of its intermediates are pseudo-first-order. The hydrogenation rate of the latter is always much smaller than that of the former probably due to increasing steric hindrance introduced by the hydrogenated benzene rings of PAHs which impedes the adsorption process and hydrogen access to PAHs on catalyst surfaces.  相似文献   
56.
Lin YC  Panchangam SC  Wu CH  Hong PK  Lin CF 《Chemosphere》2011,82(4):502-506
Due to their potential toxicity and odourous nature, the residual organics in municipal solid waste incinerators are recently gaining attention as an important issue of resources recovery apart from their complex mixture of organic counterpart. Studies of the organic fractions in municipal solid waste incinerator residues have been limited. In this study, extended solid-phase extraction of the water-washed bottom ash and liquid-phase extraction of the washing water were carried out with regard to bottom ash samples from three mass-burning incinerators in Taipei County (Taiwan) during four consecutive seasons of year 2008-2009. Supercritical fluid extraction and Soxtec extraction techniques along with GC-MS were successfully used to characterize the residual organics in weathered and washed bottom ashes. Supercritical fluid extraction provided the quantification of aliphatics and aromatic compounds such as hexanoic acid and benzaldehyde, respectively. Soxtec extraction was useful for qualitative analysis of aromatic and aliphatic groups in the ashes and many of which were odourous and toxic compounds. By mixing one unit weight (g) bottom ash with two unit volume (mL) water for 15 min, total organic carbon in the bottom ash was greatly reduced (e.g., from 4.1 to 1.8 wt.%). Among the removed were foul odour-causing compounds such as pyridine and quinoline derivatives, while some aromatic compounds such as 4-hydroxybenzaldehyde and low-molecular-weight aliphatics such as hexanoic acid remained. The results here suggest that washing with water can be an effective pre-treatment step for removing odour-causing and environmental concerned organics.  相似文献   
57.
The aim of this paper was to measure the changing desorbable fraction and bioaccessibility of phenanthrene in two different soils with increasing soil-phenanthrene contact time using supercritical fluid extractions (SFE). Both soils were spiked with 100 mg kg−1 phenanthrene and aged for 28 d. Desorption profiles were measured every 7 d using selective SFE conditions and the results were compared to 14C-phenanthrene mineralisation assays. Selective SFE showed significant differences in the rates and extents of desorption in the two soils, likely to be due to different organic matter composition. Post-extraction fitting of data yielded consistent SFE extraction times within ageing soils for bioaccessibility prediction.  相似文献   
58.
Abstract

Supercritical fluid extraction (SFE) is a rapid and convenient method for the isolation of organic compounds from environmental samples. This paper describes a supercritical carbon dioxide (CO2) extraction system that uses a newly designed extraction cell to recover organic compounds from an aqueous matrix. Analysis of the extracts by gas chromatography‐electron capture detector (GC‐ECD) indicated that the herbicide trifluralin (2,6‐dinitro‐N,N‐dipropyl‐4‐trifluoromethylaniline) could be quantitatively extracted by using the SFE system proposed with small amounts of sample. The percentage of recovery obtained with the SFE system described was twice as high as the result obtained using a conventional solid‐phase extraction technique. Extraction by SFE was completed in a short period of time using a simple and low‐cost home‐made system that did not require the use of organic solvents.  相似文献   
59.
Supercritical fluid extraction (SFE) was evaluated to be applied for residue analysis of 22 gas chromatography/electron capture detector-nitrogen phosphorus detector (GC/ECD-NPD) amenable pesticides in rice, wild rice and wheat. Samples were extracted with supercritical carbon dioxide at 200 atm pressure and 50°C temperature, using methanol as a static modifier. Mean recoveries obtained with the proposed SFE method at two spiking levels with four replicates per level are compared with those obtained with an ethyl acetate-based solvent extraction/gel permeation chromatography (GPC) clean up method. Both methods gave consistent high recoveries for almost all the pesticides from all the commodities with overall mean recoveries higher than 70% with relative standard deviations lower than 20%. Remarkable exceptions were captafol and dimethoate, for which low and/or non-reproducible recoveries were obtained with the SFE method. Residue levels determined with both methods in nine different incurred samples of wheat, containing some of the studied pesticides, were very similar, but, in all cases, slightly higher levels were determined with the SFE method.  相似文献   
60.
Chen HY  Liao W  Wu BZ  Nian H  Chiu K  Yak HK 《Chemosphere》2012,89(2):179-184
The removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from solid matrices has received considerable attention because of the environmental persistence, bioaccumulation, and potential toxicity of these compounds. This study presents a simple method using concentrated HNO3 as a suppression agent, and methanol-modified supercritical carbon dioxide (Sc-CO2) extraction for removing PFOS and PFOA from solid matrices. The optimal conditions were 16 M HNO3 and 20% (v/v) methanol containing Sc-CO2, under a pressure of 20.3 MPa and a temperature of 50 °C. Extraction time was set at 70 min (40 min for static and 30 min for dynamic extraction). PFOA and PFOS were identified and quantitated by liquid chromatography/mass spectrometry. The extraction efficiencies (with double extractions) were close to 100% for PFOA and 80% for PFOS for both paper and fabric matrices. The extraction efficiencies for sand were approximately 77% for PFOA and 59% for PFOS. The results show that this method is accurate, and effective, and that it provides a promising and convenient approach to remediate the environment of hazardous PFOA and PFOS contamination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号