全文获取类型
收费全文 | 1263篇 |
免费 | 127篇 |
国内免费 | 29篇 |
专业分类
安全科学 | 1049篇 |
废物处理 | 32篇 |
环保管理 | 41篇 |
综合类 | 200篇 |
基础理论 | 19篇 |
污染及防治 | 30篇 |
评价与监测 | 20篇 |
社会与环境 | 7篇 |
灾害及防治 | 21篇 |
出版年
2023年 | 49篇 |
2022年 | 31篇 |
2021年 | 106篇 |
2020年 | 102篇 |
2019年 | 61篇 |
2018年 | 25篇 |
2017年 | 41篇 |
2016年 | 54篇 |
2015年 | 87篇 |
2014年 | 67篇 |
2013年 | 61篇 |
2012年 | 78篇 |
2011年 | 79篇 |
2010年 | 49篇 |
2009年 | 61篇 |
2008年 | 49篇 |
2007年 | 95篇 |
2006年 | 65篇 |
2005年 | 39篇 |
2004年 | 32篇 |
2003年 | 30篇 |
2002年 | 31篇 |
2001年 | 33篇 |
2000年 | 16篇 |
1999年 | 16篇 |
1998年 | 17篇 |
1997年 | 5篇 |
1996年 | 9篇 |
1995年 | 8篇 |
1994年 | 5篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 4篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1977年 | 2篇 |
1973年 | 1篇 |
排序方式: 共有1419条查询结果,搜索用时 11 毫秒
111.
针对既有聚苯乙烯泡沫类外墙外保温系统的防火问题,在空气和氮气气氛下对非阻燃和阻燃型膨胀聚苯乙烯泡沫进行了热重分析。样品由10℃/min、20℃/min、40℃/min和50℃/min四个升温速率从室温加热至800℃。热分解动力学参数由Flynn-Wall-Ozawa(FWO)等转化率方法和多参数非线性回归方法(multivariate non-linear re-gression method)计算,结果表明六溴环十二烷(HBCD)阻燃剂可一定程度上提高EPS的热稳定性。EPS在空气和氮气气氛下热解可认为是单步反应。非阻燃聚苯乙烯泡沫在空气和氮气气氛下的热解过程可由自催化n阶反应机理描述。阻燃EPS在空气气氛下的热解机理为自催化n阶反应,在氮气气氛下则为n阶反应机理。基于动力学参数和反应机理,对聚苯乙烯泡沫在不同温度下的寿命进行了预测。 相似文献
112.
113.
为研究大尺寸、全场景下LNG船舶卸货作业过程中的泄漏爆炸风险,构建某LNG接收站及其周边20.5 km2的区域场景模型,采用FLACS软件数值模拟LNG泄漏扩散、气云爆炸的演化过程.结果表明:LNG从卸料臂处以满输速率持续泄漏5 min,最大液池面积17 047 m2,最大汽化速率350 kg/m3,遇点火源发生气云爆... 相似文献
114.
To study the mechanism of the suppressing effect of Expanded Aluminium (EA) on the premixed gas explosion, premixed methane-air and propane-air gases were undergone explosion reaction in the presence of EA in a self-designed closed pipeline with the overpressures and the compositions, rates and sensitivities of products analyzed. The results showed that the 9.5% methane-air and 5% propane-air explosions produced peak pressures decreased by 79.3% and 65.6%, and residual methane and propane contents increased by 270% and 560% respectively than without EA. In addition, the results revealed that the explosions of propane in the presence of EA produced less methane and carbon oxides contents, but more ethylene and propylene contents. The simulation showed that H, O, and OH are the key factors affecting the rate of products. The product compositions, together with other parameters, suggested that EA decreased temperature, inhibited chain initiation and propagation reaction, but facilitated chain termination reaction by advancing and accelerating the gas phase and wall destruction reaction of radicals, especially collisions and concentration of key free radicals. This new research method based on the analysis of explosion products can be used for in-depth research into gas explosion features and shed light on the suppressing mechanism of EA in flammable gas explosion. 相似文献
115.
Among the factors influencing dust explosion, the particle size distribution (PSD) is both one of the most important and complex to consider. For instance, it is commonly accepted that the explosion sensitivity increases when the particle size decreases. Such an assertion may be questionable for nano-objects which easily agglomerate. However, agglomerates can be broken during the dispersion process. Correlating the explosion parameters to the actual PSD of a dust cloud at the moment of the ignition becomes then essential. The effects of the moisture content and sieving were investigated on a nanocellulose powder and the impact of a mechanical agglomeration was evaluated using a silicon coated by carbon powder. Each sample was characterized before and after dispersion using in situ laser particle size measurement and a fast mobility particle sizer, and explosion and minimum ignition energy tests were conducted respectively in a 20 L sphere and in a modified Hartmann tube. It was observed that drying and/or sieving the nanocellulose mainly led to variations in terms of ignition sensitivity but only slightly modified the explosion severity. In contrast, the mechanical agglomeration of the silicon coated by carbon led to a great decrease in terms of ignition sensitivity, with a minimum ignition energy varying from 5 mJ for the raw powder to more than 1J for the agglomerated samples. The maximum rate of pressure rise also decreased due to modifications in the reaction kinetics, inducing a transition from St2 class to St1 class when agglomerating the dust. 相似文献
116.
The explosion characteristic parameters of polyethylene dust were systematically investigated. The variations in the maximum explosion pressure (Pmax), explosion index (Kst), minimum ignition energy (MIE), minimum ignition temperature (MIT), and minimum explosion concentration (MEC) of dust samples with different particle sizes were obtained. Using experimental data, a two-dimensional matrix analysis method was applied to classify the dust explosion severity based on Pmax and Kst. Then, a three-dimensional matrix was used to categorize the dust explosion sensitivity based on three factors: MIE, MIT, and MEC. Finally, a two-dimensional matrix model of dust explosion risk assessment was established considering the severity and sensitivity. The model was used to evaluate the explosion risk of polyethylene dust samples with different particle sizes. It was found that the risk level of dust explosion increased with decreasing particle size, which was consistent with the actual results. The risk assessment method can provide a scientific basis for dust explosion prevention in the production of polyethylene. 相似文献
117.
The pure decomposition behavior of 2,2′-azobis (isobutyronitrile) (AIBN) and its physical phase transformation were examined and discussed. The thermal decomposition of this self-reactive azo compound was explored using differential scanning calorimetry (DSC) to elucidate the stages in the progress of this chemical reaction. DSC was used to predict the kinetic and process safety parameters, such as self-accelerating decomposition temperature (SADT), time to maximum reaction rate under adiabatic conditions (TMRad), and apparent activation energy (Ea), under isothermal and adiabatic conditions with thermal analysis models. Moreover, vent sizing package 2 (VSP2) was applied to examine the runaway reaction combined with simulation and experiments for thermal hazard assessment of AIBN. A thorough understanding of this reaction process can identify AIBN as a hazardous and vulnerable chemical during upset situations. The sublimation and melting of AIBN near its apparent onset decomposition temperature contributed to the initial steps of the reaction and explained the exothermic attributes of the peaks observed in the calorimetric investigation. 相似文献
118.
In the last decade, the use of renewable resources has increased significantly in order to reduce the energetic dependence on fossil fuels, as they have an important contribution to the global warning and greenhouse gasses effect. Because of that, research on biofuels has been increased in the last years as its characteristics of use match those of the conventional fuel's: solid biomass can be used instead of coals, and biodiesel could replace diesel. Research on solid biomass ignition properties has been considerably developed because of the amount of industrial accidents related to the treatment and use of solid biomass (self-ignition, dust explosions, etc.). On the other hand, thermogravimetric analysis (TGA) is becoming and important characterization technique as it can be used to determine a wide spectrum of properties, such as kinetics, composition, proximate analysis, etc. This research aims to combine thermal analysis and ignition properties, by using the TGA to obtain the elemental composition of lignocellulosic biomass and compare those results to Minimum Ignition Energy (MIE) values test output, so a relation between composition and MIE can be found.To achieve this aim, biomass samples from different origins have been used: oil palm wastes (empty fruit bunches, mesocarp fiber and palm kernel shell), agricultural wastes (straw chops) and forestry wastes (wood chips and wood powder). Also, raw materials and torrefied biomass were compared. The hemicellulose/cellulose ratio was calculated and compared to different flammability properties, finding out that the greater the ratio and the lower the onset temperature (temperature at which the pyrolysis reaction accelerates), the lower was the minimum ignition energy. From this basis it was possible to define “tendency areas” that grouped the samples whose MIE values were similar. Three tendency areas were found: high minimum ignition energy, medium minimum ignition energy, and low ignition energy. 相似文献
119.
The global increase in the use of, and reliance on, plastics has prompted the demand for acrylonitrile-butadiene-styrene (ABS) resin in various fields. With this increased requirement, numerous failures have occurred in the ABS process. Those incidents, resulting from electrostatic discharge, powder accumulation, heat accumulation, construction sparks, and plant fires, have caused dust fire and explosions.In this study, the ABS resin was gleaned from the site and tested for its explosion parameters, including minimum ignition temperature of dust cloud (MITC), minimum ignition energy (MIE), and minimum explosion concentration (MEC). To improve loss prevention in the manufacturing process, ferric oxide (Fe2O3) as an inert additive was added in the ABS powder. According to the MIE test, Fe2O3 has an apparent inhibiting effect on dust explosion for the ABS dust. With the proportion of Fe2O3 increased from 25 to 50 mass% in ABS, the MIE increased from 67 to 540 mJ. The explosion tests via 20-L apparatus indicated that Fe2O3 mixed with ABS could not increase the MEC significantly. However, the explosion pressure dropped by increasing in the ratio of Fe2O3 in ABS. This inerting strategy of ABS was deemed to substantially lessen the probability and severity of fire and explosion. 相似文献
120.
An experimental device for evaluating the minimum ignition energy (MIE) of LDPE dust/ethylene hybrid mixture was built with the innovative mixing mode. The MIE of the hybrid mixture that contained ethylene below its lower explosive limit (LEL) was studied. The result indicated that adding a small amount of ethylene significantly reduced the MIE of the original dust cloud. All the MIEs with five different particle sizes were found to show similar trends of exponential attenuation with the increase of ethylene concentration; such attenuating effect grew as the dust particle size rose. When ethylene concentration increased and approached to its LEL, the reaction mechanism dominated by combustible dust turned into one dominated by combustible gas. The MIE decreased first and then increased with the dust mass and increased with the dust particle size. A multifactor mathematical correlation model of the MIE with the dust particle size and ethylene concentration was developed. 相似文献