首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1255篇
  免费   132篇
  国内免费   27篇
安全科学   1049篇
废物处理   32篇
环保管理   41篇
综合类   198篇
基础理论   19篇
污染及防治   27篇
评价与监测   20篇
社会与环境   7篇
灾害及防治   21篇
  2023年   47篇
  2022年   29篇
  2021年   106篇
  2020年   102篇
  2019年   61篇
  2018年   25篇
  2017年   41篇
  2016年   54篇
  2015年   87篇
  2014年   66篇
  2013年   61篇
  2012年   78篇
  2011年   79篇
  2010年   49篇
  2009年   61篇
  2008年   49篇
  2007年   95篇
  2006年   65篇
  2005年   39篇
  2004年   32篇
  2003年   30篇
  2002年   31篇
  2001年   33篇
  2000年   16篇
  1999年   16篇
  1998年   17篇
  1997年   5篇
  1996年   9篇
  1995年   8篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1973年   1篇
排序方式: 共有1414条查询结果,搜索用时 500 毫秒
61.
The effect of pyrolysis and oxidation characteristics on the explosion sensitivity and severity parameters, including the minimum ignition energy MIE, minimum ignition temperature MIT, minimum explosion concentration MEC, maximum explosion pressure Pmax, maximum rate of pressure rise (dP/dt)max and deflagration index Kst, of lauric acid and stearic acid dust clouds was experimentally investigated. A synchronous thermal analyser was used to test the particle thermal characteristics. The functional test apparatuses including the 1.2 L Hartmann-tube apparatus, modified Godbert-Greenwald furnace, and 20 L explosion apparatus were used to test the explosion parameters. The results indicated that the rapid and slow weight loss processes of lauric acid dust followed a one-dimensional diffusion model (D1 model) and a 1.5 order chemical reaction model (F1.5 model), respectively. In addition, the rapid and slow weight loss processes of stearic acid followed a 1.5 order chemical reaction model (F1.5 model) and a three-dimensional diffusion model (D3 model), respectively, and the corresponding average apparent activation energy E and pre-exponential factor A were larger than those of lauric acid. The stearic acid dust explosion had higher values of MIE and MIT, which were mainly dependent on the higher pyrolysis and oxidation temperatures and the larger apparent activation energy E determining the slower rate of chemical bond breakage during pyrolysis and oxidation. In contrast, the lauric acid dust explosion had a higher MEC related to a smaller pre-exponential factor A with a lower amount of released reaction heat and a lower heat release rate during pyrolysis and oxidation. Additionally, due to the competition regime of the higher oxidation reaction heat release and greater consumption of oxygen during explosion, the explosion pressure Pm of the stearic acid dust was larger in low concentration ranges and decayed to an even smaller pressure than with lauric acid when the concentration exceeded 500 g/m3. The rate of explosion pressure rise (dP/dt)m of the stearic acid dust was always larger in the experimental concentration range. The stearic acid dust explosion possessed a higher Pmax, (dP/dt)max and Kst mainly because of a larger pre-exponential factor A related to more active sites participating in the pyrolysis and oxidation reaction. Consequently, the active chemical reaction occurred more violently, and the temperature and overpressure rose faster, indicating a higher explosion hazard class for stearic acid dust.  相似文献   
62.
Lysine is widely used in the fields of food, medicine and feed, which generally appears in the form of lysine sulfate or lysine hydrochloride dust because of the high instability of the free L-lysine. The L-lysine Sulfate is in high risk of decomposition, spontaneous ignition and even the dust explosion, because the control temperature in its production process is high up to 90 °C. Thus, the thermal behaviors and its thermal stability of 65% lysine sulfate are experimentally explored in Air and Nitrogen using the simultaneous TG-DSC measurements. Results show: (1) the decomposition of 65% lysine sulfate can be divided into three stages both in the atmospheres of air and nitrogen, and most of the weight loss occurred in the first two stages, which are related with the decarboxylation and deamination process. (2) The effects of atmosphere on the decomposition of 65% lysine sulfate mainly occur at the third stage. In this stage, the weight loss in nitrogen is only 14.2%, which is much lower than that in air (34.3%), which is related to the oxidative degradation at high temperature. Besides, the active energy is slightly increased in nitrogen compared to that in air. (3) The initial temperatures of the decomposition of the 65% lysine sulfate are 145 °C and 155 °C, for the air and nitrogen atmosphere, respectively, which are much lower than that (260 °C) of the pure lysine.  相似文献   
63.
This paper mainly studied the influence of particle size distribution on the explosion risk of aluminum powder under the span of large particle size distribution. The measurement was carried out with the 20 L explosion ball and the Hartmann tube. The statistical analysis was used to analyze the relevance between the parameters of explosion risk and the particle size parameters. Test results showed that with the increase of particle size, the sensitivity parameter increases and the intensity parameter deceleration decreases. The effect of particle size change on MEC and MIE of small particle size aluminum powder is relatively small but greater impact on Pm and (dP/dt)m. The small particle size components greatly increasing the sensitivity of the explosion and accelerating the rate of the explosion reaction; while the large particle size component contributes to the maximum explosion pressure. D3,2 particle size dust determines the risk of aluminum powder explosion.  相似文献   
64.
Reducing accident occurrence in petrochemical plants is crucial, thus appropriately allocating management resources to safety investment is a vital issue for corporate management as international competition intensifies. Understanding the priority of safety investment in a rational way helps achieve this objective.In this study, we targeted an acrylonitrile plant. First, Dow Chemical's Fire and Explosion Index (F&EI) identified the reaction process as having the greatest physical risk. We evaluated the severity of accidents in the reaction process using the Process Safety Metrics advocated by the Center for Chemical Process Safety (CCPS); however, this index does not express damages a company actually experience. To solve this problem, we proposed a new metric that adds indirect cost to CCPS metrics. We adopted fault tree analysis (FTA) as a risk assessment method. In identifying top events and basic events, we attempted to improve the completeness of risk identification by considering accidents from the past, actual plant operation and equipment characteristics, natural disasters, and cyber-attacks and terrorist attacks. Consequently, we identified the top events with high priority in handling because of serious accidents as fire/explosion outside the reactor, fire/explosion inside the reactor, and reactor destruction. The new CCPS evaluation index proposed in this study found that fire and explosion outside the reactor has the highest severity. We considered the creation of the fault tree (FT) diagram of the top event, estimating the occurrence probability, and identifying the risk reduction part and capital investment aimed at risk reduction. As an economically feasible selection method for risk reduction investment, using the difference in loss amounts before and after safety investments indicated investment priority.  相似文献   
65.
For lack of an extinguishing agent with high-efficiency, non-toxic and environmentally friendly, a new type of extinguishing agent was fabricated to solve such an urgent problem. In this study, the zinc borate (ZB) and ferrocene (Fe(Cp)2) were utilized as two additives for extinguishants to suppress combustion reaction and the toxicity of the tail gas was detected. The mass fraction of ZB corresponding to the optimal inhibitory effect was determined to be 0.5–1.5%, by contrast, the optimum interval of Fe(Cp)2 was detected as 0.5–1.0%. Similarly, with the increasing proportion of the two additives, the homologous inhibitory action was gradually weakened. From the perspective of thermogravimetric analysis (TGA), it was indicated that the ZB accelerated the pyrolysis process of the extinguishant, making its thermal decomposition process more thoroughly. Meanwhile, the differential scanning calorimetry (DSC) demonstrated that the decomposition efficiency was markedly improved when the amount of ZB was maintained at 0.5–1.5%. Besides, the tail gas tests were implemented to assess the extent of toxic and harmful properties. In terms of the carbon monoxide (CO) and carbon dioxide (CO2) generated, once the mass fraction of ZB and Fe(Cp)2 was less than 1.5% and 1.0% respectively, the concentration of CO and CO2 was distinctly lower than that without additives. Moreover, the inhibitory ability on nitrogen oxides (NOx) was enhanced when the mass fraction of the two additives was kept below 1.0%. The results confirmed that a more practical extinguishant was proposed and it can provide guidance for the application and development of extinguishants.  相似文献   
66.
There is a noticeable discrepancy in the ability to control reduced explosion overpressure between flat bursting panels and curved bursting panels with the same static activation overpressure. Flat bursting plates were observed to leak at approximately 80% of the static activation overpressure lower than curved bursting plates. A new experimental technique is proposed in our paper. Three different vent areas of flat and curved bursting panels were tested, there was significant difference in structural stiffness between flat bursting panels and curved bursting panels, which is the reason the discrepancy in the ability to control reduced explosion overpressure. The structural stiffness of the flat bursting panels is poorer than that of the other, and a greater deformation of the flat bursting panels occurs under the same load. The membrane stress caused by the explosion overpressure therefore produces a larger value in the flat bursting panels which causes it to open prematurely. Moreover, the smaller the vent area that is, the more significant discrepancy in controlling the reduced explosion overpressure between both bursting panels is. This experimental and theoretical result in our paper provides some useful experience for the method of explosion venting.  相似文献   
67.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   
68.
Fire and explosion accidents are frequently caused by combustible dust, which has led to increased interest in this area of research. Although scholars have performed some research in this field, they often ignored interesting phenomena in their experiments. In this paper, we established a 2D numerical method to thoroughly investigate the particle motion and distribution before ignition. The optimal time for the corn starch dust cloud to ignite was determined in a semi-closed tube, and the characteristics of the flame propagation and temperature field were investigated after ignition inside and outside the tube. From the simulation, certain unexpected phenomena that occurred in the experiment were explained, and some suggestions were proposed for future experiments. The results from the simulation showed that 60–70 ms was the best time for the dust cloud to ignite. The local high-temperature flame clusters were caused by the agglomeration of high-temperature particles, and there were no flames near the wall of the tube due to particles gathering and attaching to the wall. Vortices formed around the nozzle, where the particle concentration was low and the flame spread slowly. During the explosion venting, particles flew out of the tube before the flame. The venting flame exhibited a “mushroom cloud” shape due to interactions with the vortex, and the flame maintained this shape as it was driven upward by the vortex.  相似文献   
69.
By varying inert gas content, equivalence ratio and initial pressure, this study is aimed at investigating flame propagation behaviors and explosion pressure characteristics near suppression limit. For carbon dioxide, the weakest flame floating phenomenon is observed at Φ = 1.5 and the buoyant instability is enhanced when the equivalent ratio deviates to the rich and lean sides. For nitrogen, the buoyant instability decreases with increasing equivalent ratio. Both maximum explosion pressure and maximum pressure rise rate increase firstly and then decrease with the increase of equivalence ratio, and they decrease significantly with increasing content of carbon dioxide and nitrogen. For carbon dioxide, the critical suppression ratio of Φ = 0.6, 0.8, 1.0, 1.5 and 2.0 is 7.50, 7.18, 5.74, 3.83, and 2.87. For nitrogen, the critical suppression ratio of Φ = 0.6, 0.8, 1.0, 1.5 and 2.0 is 15.83, 11.87, 9.50, 6.33 and 4.75. Compared to nitrogen, the carbon dioxide is more effective on suppressing hydrogen explosion pressure. The adiabatic flame temperature, thermal diffusivity and mole fraction of active radicals continue to decrease with increasing content of carbon dioxide and nitrogen, which contributes to the decrease of laminar burning velocity.  相似文献   
70.
In recent years, significant progress has been made to ensure that process industries are among the safest workplaces in the world. However, with the increasing complexity of existing technologies and new problems brought about by emerging technologies, a strong need still exists to study the fundamentals of process safety and predict possible scenarios. This is attained by conducting the corresponding consequence modeling and risk assessments. As a result of the continuous advancement of Computational Fluid Dynamics (CFD) tools and exponentially increased computation capabilities along with better understandings of the underlying physics, CFD simulations have been applied widely in the areas of process safety and loss prevention to gain new insights, improve existing models, and assess new hazardous scenarios. In this review, 126 papers from 2010 to 2020 have been included in order to systematically categorize and summarize recent applications of CFD for fires, explosions, dispersions of flammable and toxic materials from accidental releases, incident investigations and reconstructions, and other areas of process safety. The advantages of CFD modeling are discussed and the future of CFD applications in this research area is outlined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号