首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1255篇
  免费   132篇
  国内免费   27篇
安全科学   1049篇
废物处理   32篇
环保管理   41篇
综合类   198篇
基础理论   19篇
污染及防治   27篇
评价与监测   20篇
社会与环境   7篇
灾害及防治   21篇
  2023年   47篇
  2022年   29篇
  2021年   106篇
  2020年   102篇
  2019年   61篇
  2018年   25篇
  2017年   41篇
  2016年   54篇
  2015年   87篇
  2014年   66篇
  2013年   61篇
  2012年   78篇
  2011年   79篇
  2010年   49篇
  2009年   61篇
  2008年   49篇
  2007年   95篇
  2006年   65篇
  2005年   39篇
  2004年   32篇
  2003年   30篇
  2002年   31篇
  2001年   33篇
  2000年   16篇
  1999年   16篇
  1998年   17篇
  1997年   5篇
  1996年   9篇
  1995年   8篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1973年   1篇
排序方式: 共有1414条查询结果,搜索用时 906 毫秒
901.
Storage tank separation distance, which considerably affects forestalling and mitigating accident consequences, is principally determined by thermal radiation modeling and meeting industry safety requirements. However, little is known about the influence of separation distance on gas dispersion or gas explosion, which are the most destructive types of accidents in industrial settings. This study evaluated the effect of separation distance on gas dispersion and vapor cloud explosion in a storage tank farm. Experiments were conducted using Flame Acceleration Simulator, an advanced computational fluid dynamics software program. Codes governing the design of separation distances in China and the United States were compared. A series of geometrical models of storage tanks with various separation distances were established. Overall, increasing separation distance led to a substantial reduction in vapor cloud volume and size in most cases. Notably, a 1.0 storage diameter separation distance appeared to be optimal. In terms of vapor cloud explosion, a greater separation distance had a marked effect on mitigating overpressure in gas explosions. Therefore, separation distance merited consideration in the design of storage tanks to prevent gas dispersion and explosion.  相似文献   
902.
Emulsion explosives are one type of main industrial explosives. The emergence of the large cartridge emulsion explosives has brought new security incidents. The differential scanning calorimeter (DSC) and the accelerating rate calorimeter (ARC) were selected for the preliminary investigation of the thermal stability of emulsion explosives. The results showed that the initial thermal decomposition temperatures were in the range of 232–239 °C in nitrogen atmosphere (220–232 °C in oxygen atmosphere) in DSC measurements and 216 °C in ARC measurements. The slow cook-off experiments were carried out to investigate the critical temperature of the thermal decomposition (Tc) of the large cartridge emulsion explosives. The results indicated that the larger the diameter of the emulsion explosives, the smaller the Tc is. For the large cartridge emulsion explosives with diameter of 70 mm, the Tc was 170 °C at the heating rate of 3 °C h−1. It is a dangerous temperature for the production of the large cartridge emulsion explosives and it should cause our attention.  相似文献   
903.
为探索受限空间中瓦斯爆炸及氢气对爆炸过程的影响,采用GRI-Mech 3.0甲烷燃烧机理,建立受限空间中瓦斯爆炸的数学模型,应用CHEMKIN软件,对受限空间内瓦斯爆炸过程及氢气对反应物浓度、活化中心浓度、主要致灾性气体浓度的影响进行模拟分析。通过对反应机理的敏感性分析,找出影响瓦斯爆炸及爆炸后主要致灾性气体生成的关键反应步。结果表明:混合气中分别充入0.5%,2%,3.5%氢气时,爆炸时间分别提前0.005 7,0.010 5,0.011 1 s;爆炸后压力分别提高2.53,4.05,7.60 kPa;爆炸后温度分别提高20,60,100 K。由此可见,随着混合气中氢气含量的增加,瓦斯引爆时间越来越短,其爆炸强度也随之增大,且氢气在一定程度上对有害气体CO,CO2,NO,NO2的生成有很大影响。  相似文献   
904.
Explosions often lead to destruction of equipment, which is a difficult problem including complicated fluid-solid interactions. Most traditional CFD methods cannot synchronously solve the movements of fluids and large deformation and fracture of solids because such problem is usually accompanied with constantly moving-and-changing boundary conditions. In this paper, a coupled Finite Element Method-Smoothed Particle Hydrodynamics (FEM-SPH) method was proposed to simulate the dynamic processes of explosions in pipes. The propagation of blast wave and the fracture of pipe were captured in every timestep, where the energy dissipation caused by plastic deformation and crack propagation were fully considered. A rate-dependent failure criterion for high-strain-rate load conditions was employed in the numerical simulation, which was presented in our previous work and has been verified in the dynamic fracture behavior of steels for pressure vessels and pipes. In addition, a simpler formula was proposed to describe the attenuation of blast wave outside the pipe and the consequences caused by the explosions were assessed. Results revealed the interaction between blast wave and pipe, the leakage of detonation products, the attenuations of peak overpressures outside the pipe and the corresponding consequences at different distances. It is found that when considering the energy consumption during plastic deformation and crack propagation in coupled FEM-SPH method, the assessment results are more rational than that without considering such energy consumption.  相似文献   
905.
This paper analyses the experimental data reported by Höchst and Leuckel (1998) for combustion in partially confined vessels and uses the data from these experiments to establish the burning rate based on a simplified model for the combustion process in such vessels. The model establishes three fundamental parameters which are necessary in characterizing the combustion process. These are: i) the burning rate, ii) the fraction of vent area occupied by burnt gas (or discharge sub-model), and iii) the vent area model (if cover mechanisms with variable vent areas are utilized). A set of independent equations is derived to determine the burning rate according to conservation of mass and volume for each gas fraction separately along with a general equation based on general volume conservation. Using this method we are able to describe the combustion process and examine the effect of various discharge models. The advantages of the model presented here include rapid applicability and a valuable analysis to derive mass burn rate and other useful parameters using experimental data from vented explosions with reasonable residual reactant values. Based on these results, the correct interpretation of the obtained burning rate can be used in order to explain the correct prediction of flame velocity and position according to a reasonable discharge model. The paper also evaluates the suitability of several discharge models for phenomenological models of vented explosions. The most appropriate is a Heaviside step function which considers that only unburnt gas is initially expelled, with that component decreasing and the burnt gas component increasing until finally only burnt gas is expelled. The obtained results in this study can be used to predict the burning rate behavior and the combustion process of similar problems.  相似文献   
906.
The Mine Safety and Health Administration (MSHA) specification for rock dust used in underground coal mines, as defined by 30 CFR 75.2, requires 70% of the material to pass through a 200 mesh sieve (<75 μm). However, in a collection of rock dusts, 47% were found to not meet the criteria. Upon further investigation, it was determined that some of the samples did meet the specification, but were inadequate to render pulverized Pittsburgh coal inert in the National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) 20-L chamber. This paper will examine the particle size distributions, specific surface areas (SSA), and the explosion suppression effectiveness of these rock dusts. It will also discuss related findings from other studies, including full-scale results from work performed at the Lake Lynn Experimental Mine. Further, a minimum SSA for effective rock dust will be suggested.  相似文献   
907.
Despite the remarkable severity of domino effects in activities at major hazard, a complete methodology analysing such events has not been developed and integrated within Quantitative Risk Analysis (QRA). Such a deficiency appears to be particularly remarkable for domino effects triggered by the projection of fragments. The aim of the present work is therefore to propose a systematic procedure for the quantification of domino effects due to fragments projection within QRA. To achieve this objective, the deterministic approach for the estimation of the realistic trajectory of fragments is entirely reviewed. In order to incorporate such a reviewed approach within the standard QRA, a probabilistic model for the impact probability of the fragments is developed by applying a Monte-Carlo method to the trajectory equations. The validation of the proposed framework is carried out by using the data related to an accident occurred in 1993 in the oil refinery of Milazzo (Italy).  相似文献   
908.
Effective management of reservoir water resources demands a good command of ecological processes in the waterbody. In this work the three-dimensional finite element hydrodynamic model RMA10 was coupled to an eutrophication model. The models were used together with a methodology for loads estimation to foster the understanding of such processes in the largest reservoir in Western Europe—the Alqueva. Nutrient enrichment and eutrophication are water quality concerns in this man-made impoundment. A total phosphorus and nitrogen loads quantification methodology was developed to estimate the inputs in the reservoir, using point and non-point source data.Field data (including water temperature, wind, water elevation, chlorophyll-a, nutrient concentration and dissolved oxygen) and estimated loads were used as forcing for simulations.The analysis of the modeling results shows that spatial and temporal distributions for water temperature, chlorophyll-a, dissolved oxygen and nutrients are consistent with measured in situ data.Modeling results allowed the identification of likely key impact factors on the water quality of the Alqueva reservoir. It is shown that the particular geomorphological and hydrological characteristics of the reservoir together with local climate features are responsible for the existence of distinct ecological regions within the reservoir.  相似文献   
909.
Climate change is likely to impact terrestrial and aquatic ecosystems via numerous physical and biological mechanisms. This study outlines a framework for projecting potential impacts of climate change on lakes using linked environmental models. Impacts of climate drivers on catchment hydrology and thermal balance in Onondaga Lake (New York State) are simulated using mechanistic models HSPF and UFILS4. Outputs from these models are fed into a lake ecosystem model, developed in AQUATOX. Watershed simulations project increases in the magnitude of peak flows and consequent increases in catchment nutrient export as the magnitude of extreme precipitation events increases. This occurs concurrently with a decrease in annual stream discharge as a result of increased evapotranspiration. Simulated lake water temperatures increase by as much as 5 °C during the 2040-2069 time period, accompanied by a prolonging of the duration of summer stratification. Projected changes include shifts in the timing of nutrient cycling between lake sediments and water column. Plankton taxa projected to thrive under climate change include green algae and Bosmina longirostris. Responses for species at higher trophic levels are mixed. Benthic macroinvertebrates may either prosper (zebra mussels) or decline (chironomids), while fish (e.g., gizzard shad) exhibit high seasonal variability without any clear trend.  相似文献   
910.
随着我国聚烯烃粉体生产的迅猛发展,粉体生产过程中的静电爆炸事故也相应增多。该文介绍了国外粉尘静电爆炸研究的进展和国内粉尘静电爆炸事故的主要现象。近期国外的研究特点主要是逐渐采用工业规模的实验装置取代实验室的基础研究,着重开展了料仓放电的危险研究和与放电燃爆有关的基础研究,包括安全评价和工业控制条件的推荐研究。国内粉尘静电爆炸事故主要存在的现象有设计缺欠或不合理,装置扩能改造时忽视了脱挥或通风的配套改造,处理不合格料或过渡时应急处理不当,操作失误或不规范,破坏料仓通风控制,料位计选型不当,增加高能放电引燃几率。针对分析出的问题和现象,文章提出了查清运行装置的具体事故隐患,进行防止聚烯烃料仓粉尘静电爆炸的可接受研究和可操作性研究,开展粉尘静电爆炸的危险教育,提高员工的安全意识和应急处理能力等应对策略。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号