首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12398篇
  免费   1581篇
  国内免费   7172篇
安全科学   1863篇
废物处理   460篇
环保管理   1085篇
综合类   11613篇
基础理论   2661篇
环境理论   2篇
污染及防治   2096篇
评价与监测   747篇
社会与环境   400篇
灾害及防治   224篇
  2024年   72篇
  2023年   451篇
  2022年   713篇
  2021年   785篇
  2020年   773篇
  2019年   804篇
  2018年   672篇
  2017年   637篇
  2016年   782篇
  2015年   852篇
  2014年   778篇
  2013年   1396篇
  2012年   1301篇
  2011年   1403篇
  2010年   964篇
  2009年   1090篇
  2008年   920篇
  2007年   1078篇
  2006年   1030篇
  2005年   764篇
  2004年   622篇
  2003年   595篇
  2002年   445篇
  2001年   378篇
  2000年   337篇
  1999年   275篇
  1998年   200篇
  1997年   205篇
  1996年   163篇
  1995年   147篇
  1994年   110篇
  1993年   99篇
  1992年   70篇
  1991年   34篇
  1990年   28篇
  1989年   26篇
  1988年   17篇
  1987年   9篇
  1986年   12篇
  1985年   6篇
  1984年   9篇
  1983年   11篇
  1982年   13篇
  1981年   10篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1973年   5篇
  1972年   6篇
  1971年   33篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
综述了高铁酸盐去除水中藻类、细菌、烃类衍生物、药品、农药、染料等有机污染物的国内外最新研究进展,并对高铁酸盐的高效利用进行了探讨。高铁酸盐可破坏藻类和细菌细胞的完整性,将大分子芳香烃衍生物氧化为低毒的小分子中间体,将小分子链烃衍生物矿化,破坏药品、农药及染料的不饱和双键。无机矿物在溶液中负载高铁酸盐或将高分子有机物与固体高铁酸盐混合造粒,将是高铁酸盐高效利用领域的研究热点。  相似文献   
992.
The power-voltage (P-V) characteristic curves of a PV array are nonlinear and have multiple peaks under partially shaded conditions (PSCs). This paper proposes a novel maximum power point tracking (MPPT) method for a PV system with reduced steady-state oscillation based on a two-stage particle swarm optimization (PSO) algorithm. The grouping method of the shuffled frog leaping algorithm (SFLA) is incorporated in the basic PSO algorithm (PSO-SFLA), ensuring fast and accurate searching of the global extremum. An adaptive speed factor is also introduced into the improved PSO to further enhance its convergence speed. Test results show that the proposed method converges in less than half the time taken by the conventional PSO method, and the power is improved by 33% under the worst PSCs, which confirms the superiority of the proposed method over the standard PSO algorithm in terms of tracking speed and steady-state oscillations under different PSCs.  相似文献   
993.
A fused silica capillary reactor combined with a heating/cooling stage, a microscope and a digital camera were used to investigate phase behavior during the hydrothermal liquefaction of microalgae (Dunaliella tertiolecta) and model compounds, including soya protein and glycine, starch, glucose and xylose, stearic acid and palmitic acid. Bubbles were generated at 246°C and disappeared at 360°C upon heating when Dunaliella tertiolecta used as feedstocks. Moreover, liquid products were generated at 300°C upon heating and oily liquid products began to separate out at 250°C upon cooling. The phase behavior of soya protein was similar to that of the Dunaliella tertiolecta. Meanwhile, there only observed the bubbles generation during hydrothermal liquefaction of glycine. Heating the starch, glucose and xylose above 350°C generated black solids from carbonization. Stearic acid and palmitic acid only had the process of melting, dissolution, dispersion and precipitation.  相似文献   
994.
Dilute acid pretreatment and steam pretreatment were evaluated for maximum sugars release and ethanol production from sweet sorghum bagasse (SSB). The fermentation potential of the condensate and hydrolysate obtained from steam pretreatment (10 kg/cm2, 10 minutes) and dilute acid hydrolysis (1% (w/w) sulphuric acid, 25% substrate loading) respectively, was checked with Pichia stipitis NCIM 3497 and Debaryomyces hansenii sp. Ethanol production and yield using acid hydrolysate was higher with Debaryomyces hansenii sp. (28.4 g/L and 0.37 g/g respectively) as compared with Pichia stipitis NCIM 3497 (21.9 g/L and 0.29 g/g respectively).  相似文献   
995.
蔡冬利  张蕾 《化工环保》2017,37(4):487-490
采用催化裂解法处理有机硅高沸物,解决高沸物储存过程中的安全、环保问题。研究了催化剂种类、HCl加入量和精馏高沸物加入量对高沸物转化率的影响。实验结果表明:在以N,N-二丁基-1-丁胺为催化剂、合成高沸物为原料、HCl加入量为13%(w)的条件下,高沸物转化率为83.10%,二甲基二氯硅烷收率为23.78%;合成高沸物中精馏高沸物加入量为9.0%(w)时,高沸物转化率最高,为85.58%。  相似文献   
996.
A solid-phase microextration-based sampling method was employed to determine the concentrations of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its metabolites, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD), 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (DDE) and 1-chloro-2,2-bis(p-chlorophenyl)ethene (DDMU), in two estuarine bays, Daya Bay and Hailing Bay, of South China. Six DDT components including p,p′-DDT, o,p′-DDD, p,p′-DDD, o,p′-DDE, p,p′-DDE, and p,p′-DDMU were detected in Hailing Bay, while only p,p′-DDD was found in Daya Bay. p,p′-DDD was the most abundant DDT component in both bays, sharply different from the previous finding in the water column of the Palos Verdes Shelf, California, USA that p,p′-DDE was prevalent. In addition, the occurrence of p,p′-DDMU (with a range of 0.047-0.21 ng/L in Hailing Bay) has not been reported around the globe, and its presence in our study region appeared to stem from dehydrochlorination of p,p′-DDD, favored under aerobic conditions, but further investigations are clearly needed to confirm the mechanism for generation of DDMU in estuarine environments.  相似文献   
997.
Part V—sorption of pharmaceuticals and personal care products   总被引:5,自引:0,他引:5  
Background, aim, and scope  Pharmaceuticals and personal care products (PPCPs) including antibiotics, endocrine-disrupting chemicals, and veterinary pharmaceuticals are emerging pollutants, and their environmental risk was not emphasized until a decade ago. These compounds have been reported to cause adverse impacts on wildlife and human. However, compared to the studies on hydrophobic organic contaminants (HOCs) whose sorption characteristics is reviewed in Part IV of this review series, information on PPCPs is very limited. Thus, a summary of recent research progress on PPCP sorption in soils or sediments is necessary to clarify research requirements and directions. Main features  We reviewed the research progress on PPCP sorption in soils or sediments highlighting PPCP sorption different from that of HOCs. Special function of humic substances (HSs) on PPCP behavior is summarized according to several features of PPCP–soil or sediment interaction. In addition, we discussed the behavior of xenobiotic chemicals in a three-phase system (dissolved organic matter (DOM)–mineral–water). The complexity of three-phase systems was also discussed. Results  Nonideal sorption of PPCPs in soils or sediments is generally reported, and PPCP sorption behavior is relatively a more complicated process compared to HOC sorption, such as the contribution of inorganic fractions, fast degradation and metabolite sorption, and species-specific sorption mechanism. Thus, mechanistic studies are urgently needed for a better understanding of their environmental risk and for pollution control. Discussion  Recent research progress on nonideal sorption has not been incorporated into fate modeling of xenobiotic chemicals. A major reason is the complexity of the three-phase system. First of all, lack of knowledge in describing DOM fractionation after adsorption by mineral particles is one of the major restrictions for an accurate prediction of xenobiotic chemical behavior in the presence of DOM. Secondly, no explicit mathematical relationship between HS chemical–physical properties, and their sorption characteristics has been proposed. Last but not least, nonlinear interactions could exponentially increase the complexity and uncertainties of environmental fate models for xenobiotics. Discussion on proper simplification of fate modeling in the framework of nonlinear interactions is still unavailable. Conclusions  Although the methodologies and concepts for studying HOC environmental fate could be adopted for PPCP study, their differences should be highly understood. Prediction of PPCP environmental behavior needs to combine contributions from various fractions of soils or sediments and the sorption of their metabolites and different species. Recommendations and perspectives  More detailed studies on PPCP sorption in separated soil or sediment fractions are needed in order to propose a model predicting PPCP sorption in soils or sediments based on soil or sediment properties. The information on sorption of PPCP metabolites and species and the competition between them is still not enough to be incorporated into any predictive models.  相似文献   
998.
Background, aim, and scope  Dissolved humic substances (HS) usually comprise 50–80% of the dissolved organic carbon (DOC) in aquatic ecosystems. From a trophic and biogeochemical perspective, HS has been considered to be highly refractory and is supposed to accumulate in the water. The upsurge of the microbial loop paradigm and the studies on HS photo-degradation into labile DOC gave rise to the belief that microbial processing of DOC should sustain aquatic food webs in humic waters. However, this has not been extensively supported by the literature, since most HS and their photo-products are often oxidized by microbes through respiration in most nutrient-poor humic waters. Here, we review basic concepts, classical studies, and recent data on bacterial and photo-degradation of DOC, comparing the rates of these processes in highly humic ecosystems and other aquatic ecosystems. Materials and methods  We based our review on classical and recent findings from the fields of biogeochemistry and microbial ecology, highlighting some odd results from highly humic Brazilian tropical lagoons, which can reach up to 160 mg C L−1. Results and discussion  Highly humic tropical lagoons showed proportionally lower bacterial production rates and higher bacterial respiration rates (i.e., lower bacterial growth efficiency) than other lakes. Zooplankton showed similar δ13C to microalgae but not to humic DOC in these highly humic lagoons. Thus, the data reviewed here do not support the microbial loop as an efficient matter transfer pathway in highly humic ecosystems, where it is supposed to play its major role. In addition, we found that some tropical humic ecosystems presented the highest potential DOC photo-chemical mineralization (PM) rates reported in the literature, exceeding up to threefold the rates reported for temperate humic ecosystems. We propose that these atypically high PM rates are the result of a joint effect of the seasonal dynamics of allochthonous humic DOC input to these ecosystems and the high sunlight incidence throughout the year. The sunlight action on DOC is positive to microbial consumption in these highly humic lagoons, but little support is given to the enhancement of bacterial growth efficiency, since the labile photo-chemical products are mostly respired by microbes in the nutrient-poor humic waters. Conclusions  HS may be an important source of energy for aquatic bacteria in humic waters, but it is probably not as important as a substrate to bacterial growth and to aquatic food webs, since HS consumption is mostly channeled through microbial respiration. This especially seems to be the case of humic-rich, nutrient-poor ecosystems, where the microbial loop was supposed to play its major role. Highly humic ecosystems also present the highest PM rates reported in the literature. Finally, light and bacteria can cooperate in order to enhance total carbon degradation in highly humic aquatic ecosystems but with limited effects on aquatic food webs. Recommendations and perspectives  More detailed studies using C- and N-stable isotope techniques and modeling approaches are needed to better understand the actual importance of HS to carbon cycling in highly humic waters.  相似文献   
999.
Background, aim and scope  The use of sodium hypochlorite (HYP) in viticulture results in effluents which are contaminated with halogenated substances. These disinfection by-products (DBPs) can be quantified as group parameter ‘adsorbable organic halogens’ (AOX) and have not been determined in effluents of viticulture yet. The substances that are detected as AOX are unknown. The AOX can be composed of harmless substances, but even toxic contaminants. Thus, it is impossible to assess ecological impacts. The aim of this study is to determine the quantification of AOX and DBPs after the use of HYP. This will be helpful to reduce environmental pollution by AOX. Materials and methods  The potential of HYP to generate AOX was determined in laboratory-scale experiments. Different model solutions were treated with HYP according to disinfection processes in viticulture and conditions of AOX formation in effluents were simulated. AOX were quantified using the flask-shaking method and identified DBPs were investigated by gas chromatography–mass spectrometry. Results  Treatment with HYP resulted in the formation of AOX. The percentage conversion of HYP to AOX was up to 11%. Most important identified DBPs in viticulture are chloroform, dichloroacetic acid and trichloroacetaldehyde. In addition, the formation of carbon tetrachloride (CT), 1,1,1-trichloropropanone, 2,4-dichlorobenzoic acid and 2-chloro-/2,4-dichlorophenylacetic acid was investigated. It was demonstrated that reaction temperature, concentration of HYP and type of organic matter have important influence on the formation of chlorinated DBPs. Discussion  The percentage conversion of HYP to AOX was similar to other published studies. Although a correlation of single compounds and AOX is difficult, chloroform was the predominant AOX. Generation of the volatile chloroform should be avoided due to possible adverse effects. The generation of dichloroacetic acid is of minor importance on account of biodegradation. Trichloroacetaldehyde and 1,1,1-trichloropropanone are weak mutagens and their formation should be avoided. Conclusions  The generation of AOX and chlorinated DBPs can be minimised by reducing the concentrations of the organic materials in the effluents. The removal of organic matter before disinfection results in a decreased formation of AOX. HYP is an effective disinfectant; therefore, it should be used at low temperatures and concentrations to reduce the amount of AOX. If possible, disinfection should be accomplished by the use of no chlorine-containing agents. By this means, negative influences of HYP on the quality of wine can also be avoided. Recommendations and perspectives  Our results indicate that HYP has a high potential to form AOX in effluents of viticulture. The predominant by-products are chloroform, dichloroacetic acid and trichloroacetaldehyde. In further research, wastewaters from a winery and the in- and outflows of two sewage treatment plants were sampled during vintage and analysed. These results will be discussed in a following paper.  相似文献   
1000.

Background, aim and scope

Estrogenic and non-estrogenic chemicals typically co-occur in the environment. Interference by non-estrogenic chemicals may confound the assessment of the actual estrogenic activity of complex environmental samples. The aim of the present study was to investigate whether, in which way and how seriously the estrogenic activity of single estrogens and the observed and predicted joint action of estrogenic mixtures is influenced by toxic masking and synergistic modulation caused by non-estrogenic chemical confounders.

Materials and methods

The yeast estrogen screen (YES) was adapted so that toxicity and estrogenicity could be quantified simultaneously in one experimental run. Mercury, two organic solvents (dimethyl sulfoxide (DMSO) and 2,4-dinitroaniline), a surfactant (LAS-12) and the antibiotic cycloheximide were selected as toxic but non-estrogenic test chemicals. The confounding impact of selected concentrations of these toxicants on the estrogenic activity of the hormone 17ß-estradiol was determined by co-incubation experiments. In a second step, the impact of toxic masking and synergistic modulation on the predictability of the joint action of 17ß-estradiol, estrone and estriol mixtures by concentration addition was analysed.

Results

Each of the non-estrogenic chemicals reduced the apparent estrogenicity of both single estrogens and their mixtures if applied at high, toxic concentrations. Besides this common pattern, a highly substance- and concentration-dependent impact of the non-estrogenic toxicants was observable. The activity of 17ß-estradiol was still reduced in the presence of only low or non-toxic concentrations of 2,4-dinitroaniline and cycloheximide, which was not the case for mercury and DMSO. A clear synergistic modulation, i.e. an enhanced estrogenic activity, was induced by the presence of slightly toxic concentrations of LAS-12. The joint estrogenic activity of the mixture of estrogens was affected by toxic masking and synergistic modulation in direct proportion to the single estrogens, which allowed for an adequate adaptation of concentration addition and thus unaffected predictability of the joint estrogenicity in the presence of non-estrogenic confounders.

Discussion

The modified YES proved to be a reliable system for the simultaneous quantification of yeast toxicity and estrogen receptor activation. Experimental results substantiate the available evidence for toxic masking as a relevant phenomenon in estrogenicity assessment of complex environmental samples. Synergistic modulation of estrogenic activity by non-estrogenic confounders might be of lower importance. The concept of concentration addition is discussed as a valuable tool for estrogenicity assessment of complex mixtures, with deviations of the measured joint estrogenicity from predictions indicating the need for refined analyses.

Conclusions

Two major challenges are to be considered simultaneously for a reliable analysis of the estrogenic activity of complex mixtures: the identification of known and suspected estrogenic compounds in the sample as well as the substance- and effect-level-dependent confounding impact of non-estrogenic toxicants.

Recommendations and perspectives

The application of screening assays such as the YES to complex mixtures should be accompanied by measures that safeguard against false negative results which may be caused by non-estrogenic but toxic confounders. Simultaneous assessments of estrogenicity and toxicity are generally advisable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号