首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   47篇
  国内免费   55篇
安全科学   97篇
环保管理   150篇
综合类   81篇
基础理论   15篇
污染及防治   18篇
评价与监测   4篇
社会与环境   3篇
灾害及防治   70篇
  2023年   4篇
  2022年   13篇
  2021年   15篇
  2020年   14篇
  2019年   14篇
  2018年   13篇
  2017年   14篇
  2016年   11篇
  2015年   14篇
  2014年   21篇
  2013年   13篇
  2012年   25篇
  2011年   29篇
  2010年   39篇
  2009年   30篇
  2008年   12篇
  2007年   23篇
  2006年   25篇
  2005年   10篇
  2004年   12篇
  2003年   11篇
  2002年   15篇
  2001年   8篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   8篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1980年   1篇
  1977年   1篇
排序方式: 共有438条查询结果,搜索用时 31 毫秒
121.
钢桥因具有跨径大、承载能力强、施工工期短等特点,被世界各国广泛采用,但在使用过程中,由于重载甚至超载车辆的反复作用、自然灾害的侵袭及交通事故等人为因素的作用,经常造成桥梁损伤和局部破坏,导致桥梁承载能力和耐久性的降低,甚至影响到运营的安全。本文建立了钢拱桥的健康检测和安全评价方法,采用防腐涂层厚度测定、结合强度测定、无损探伤和动静载荷试验等手段对紫下大桥健康状况进行了检测,采用不确定层次分析法对大桥进行了安全评价,提出了处理意见和措施,为既有钢拱桥的健康检测、评价和维护积累了有益的资料。  相似文献   
122.
ABSTRACT: A mathematical model is developed to optimally schedule long-term stormwater infrastructure rehabilitation activities. The model is capable of considering multiple rehabilitation projects and is driven by overall cost eensiderations. Rehabilitation activities are scheduled based on perceived reliabilities and future deterioration expected within the specified planning horizon. Future growth within the stormwater drainage basin is incorporated using chance constraints that limit the likelihood that a stormwater discharge exceeds system conveyance capacity. Model structure and development are discussed, and a hypothetical example using a drainage network is presented.  相似文献   
123.
Abstract: This study compared lag time characteristics of low impact residential development with traditional residential development. Also compared were runoff volume, peak discharge, hydrograph kurtosis, runoff coefficient, and runoff threshold. Low impact development (LID) had a significantly greater centroid lag‐to‐peak, centroid lag, lag‐to‐peak, and peak lag‐to‐peak times than traditional development. Traditional development had a significantly greater depth of discharge and runoff coefficient than LID. The peak discharge in runoff from the traditional development was 1,100% greater than from the LID. The runoff threshold of the LID (6.0 mm) was 100% greater than the traditional development (3.0 mm). The hydrograph shape for the LID watershed had a negative value of kurtosis indicating a leptokurtic distribution, while traditional development had a positive value of kurtosis indicating a platykurtic distribution. The lag times of the LID were significantly greater than the traditional watershed for small (<25.4 mm) but not large (≥25.4 mm) storms; short duration (<4 h) but not long duration (≥4 h) storms; and low antecedent moisture condition (AMC; <25.4 mm) storms but not high AMC (≥25.4 mm) storms. This study indicates that LID resulted in lowered peak discharge depth, runoff coefficient, and discharge volume and increased lag times and runoff threshold compared with traditional residential development.  相似文献   
124.
Abstract: Dissolved silica (DSi) availability is a factor that affects the composition of algal populations in aquatic ecosystems. DSi cycling is tightly linked to the hydrological cycle, which is affected by human alterations of the landscape. Development activities that increase impervious cover change watershed hydrology and may increase the discharge of DSi‐poor rainwater and decrease the discharge of DSi‐rich ground water into aquatic ecosystems, possibly shifting algal community composition toward less desirable assemblages. In this study, DSi loadings from two adjacent coastal watersheds with different percent impervious cover were compared during four rain and five nonrain events. Loadings in the more impervious watershed contained a significantly larger proportion of surface runoff than base flow (ground‐water discharge) and had lower [DSi] water during rain events than the less impervious watershed. Application of the Soil Conservation Service Curve Number (CN) method showed that the minimum rainfall height necessary to yield runoff was significantly lower for the more impervious watershed, implying that runoff volumes increase with impervious cover as well as the frequency of runoff‐yielding events. Empirical data collected during this study and estimates derived from the CN method suggest that impervious cover may be responsible for both short‐term DSi limitation during rain events as well as long‐term reduction of DSi inputs into aquatic ecosystems.  相似文献   
125.
针对目前我国河道管理的现状,在原有防洪影响评价的基础上,综合运用广义结构可靠性原理及多种相关学科理论,提出了跨河道桥工程防洪风险的评价理念,建立了跨河道桥工程防洪风险的评价指标体系和管理体系,并结合工程实例验证了方法体系的适用性与可靠性。  相似文献   
126.
On the basis of published guidelines, urban stormwater sediments do not appear to constitute a major regional environmental problem with respect to the chemical characteristics investigated here. At individual sites, high concentrations of organic compounds—chlordane, dieldrin, PCBs, and toxaphene—may require some attention. The possible environmental hazard presented by low-level organochlorine contamination is not addressed in this paper; however, high levels of toxicity in urban sediments are difficult to explain. Sediment toxicity varied significantly with time, which indicates that these tests should be evaluated carefully before they are used for management decisions.  相似文献   
127.
ABSTRACT: Design of bridges spanning tidal estuaries or bays requires an estimate of peak tidal flow. One common approach to estimating these flows (Neill's method) uses a first‐order approximation of uniform water surface rise in the water body. For larger water bodies, the assumptions of this method are decreasingly valid. This study develops a simple modification that accounts for the spatial variability in the response of tidal waterways to storm surge flows. The peak tidal flow predicted by Neill's equation is compared to the peak flow determined by numerical simulation of estuaries with simple geometries, ranging from 1 to 25 km in length, using the U.S. Army Corps of Engineers one‐dimensional unsteady flow model, UNET. Results indicate that, under certain conditions, it may be appropriate to apply a correction factor to the peak discharge and peak velocity predicted by Neill's method. An algorithm, developed by nonlinear regression, is presented for computing correction factors based on estuary length, shape, mean depth, and storm‐tide characteristics. The results should permit the design of more reliable, cost‐effective structures by providing more realistic estimates of the potential for bridge scour in tidal waterways, especially when a full solution of the unsteady flow equations is impractical.  相似文献   
128.
ABSTRACT: The objective of this investigation was to determine the effect of sampling frequency and sampling type on estimates of monthly nutrient loads and flow‐weighted nutrient concentrations in a constructed wetland. Phosphorus and nitrogen loads and concentrations entering and leaving a subtropical wetland (the Everglades Nutrient Removal Project, ENRP) were calculated on the basis of three sampling frequencies. The first frequency included weekly composite samples (three daily samples composited for one week) and grab samples from August 1994 to July 1997, representing a base‐line condition for comparison with results using reduced sampling frequencies. The second and third sampling frequency included three and two composite samples per month, respectively, drawn from the weekly samples. Total phosphorus and nitrogen loads calculated using two and three samples per month were almost identical to results based on four samples per month (least‐squares regression coefficients ranged from 0.96 to 0.98). Results of monthly mean flow‐weighted nutrient concentrations, obtained using reduced sampling frequencies, also were strongly correlated to concentrations calculated using the base‐line sampling frequency (r2ranged from 0.82 to 0.93). Grab samples did not always provide good estimates of loads or concentrations, particularly at the inflow when data were highly variable. From the results of this study, we can recommend that bi‐weekly composite sampling be used to monitor nutrient concentrations and loads discharged from larger‐scale Everglades Stormwater Treatment Areas (STAs) now under construction. Because there are high costs associated with water sample collection and processing, studies to identify optimal sampling frequencies should be a key feature in the design of any comprehensive wetland‐monitoring program.  相似文献   
129.
ABSTRACT: Levee sump systems are used by many riverine communities for temporary storage of urban wet weather flows. The hydrologic performance and transport of stormwater pollutants in sump systems, however, have not been systematically studied. The objective of this paper is to present a case study to demonstrate development and application of a procedure for assessing the hydraulic performance of flood control sumps in an urban watershed. Two sumps of highly variable physical and hydraulic characteristics were selected for analysis. A hydrologic modeling package was used to estimate the flow hydrograph for each outfall as part of the flow balance for the sump. To validate these results, a water balance was used to estimate the total runoff using sump operational data. The hydrologic model calculations provide a satisfactory estimate of the total runoff and its time‐distribution to the sump. The model was then used to estimate pollutant loads to the sump and to the river. Although flow of stormwater through a sump system is regulated solely by flood‐control requirements, these sumps may function as sedimentation basins that provide purification of stormwater. A sample calculation of removals of several conventional pollutants in the target sumps using a mass balance approach is presented.  相似文献   
130.
ABSTRACT: Channel instability and aquatic ecosystem degradation have been linked to watershed imperviousness in humid regions of the U.S. In an effort to provide a more process‐based linkage between observed thresholds of aquatic ecosystem degradation and urbanization, standard single event approaches (U.S. Geological Survey Flood Regression Equations and rational) and continuous hydrologic models (HSPF and CASC2D) were used to examine potential changes in flow regime associated with varying levels of watershed imperviousness. The predicted changes in flow parameters were then interpreted in concert with risk‐based models of channel form and instability. Although low levels of imperviousness (10 to 20 percent) clearly have the potential to destabilize streams, changes in discharge, and thus stream power, associated with increased impervious area are highly variable and dependent upon watershed‐specific conditions. In addition to the storage characteristics of the pre‐development watershed, the magnitude of change is sensitive to the connectivity and conveyance of impervious areas as well as the specific characteristics of the receiving channels. Different stream types are likely to exhibit varying degrees and types of instability, depending on entrenchment, relative erodibility of bed and banks, riparian condition, mode of sediment transport (bedload versus suspended load), and proximity to geomorphic thresholds. Nonetheless, simple risk‐based analyses of the potential impacts of land use change on aquatic ecosystems have the potential to redirect and improve the effectiveness of watershed management strategies by facilitating the identification of channels that may be most sensitive to changes in stream power.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号