首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   19篇
  国内免费   22篇
安全科学   38篇
废物处理   3篇
环保管理   98篇
综合类   86篇
基础理论   16篇
污染及防治   5篇
评价与监测   27篇
社会与环境   16篇
灾害及防治   26篇
  2023年   6篇
  2022年   5篇
  2021年   5篇
  2020年   6篇
  2019年   2篇
  2018年   4篇
  2017年   14篇
  2016年   14篇
  2015年   17篇
  2014年   8篇
  2013年   12篇
  2012年   26篇
  2011年   23篇
  2010年   7篇
  2009年   13篇
  2008年   10篇
  2007年   19篇
  2006年   8篇
  2005年   9篇
  2004年   7篇
  2003年   8篇
  2002年   13篇
  2001年   6篇
  2000年   10篇
  1999年   2篇
  1998年   7篇
  1997年   2篇
  1996年   6篇
  1995年   1篇
  1994年   2篇
  1993年   5篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   3篇
  1972年   1篇
  1971年   3篇
  1969年   1篇
排序方式: 共有315条查询结果,搜索用时 250 毫秒
11.
金竹山土朱煤矿开采地表沉降规律与灰色预测模型研究   总被引:4,自引:1,他引:3  
针对金竹山矿业公司土朱煤矿煤层赋存条件,依据采动理论的裂缝垂直分带模型,分析地表沉降和塌陷的机理;提出在采煤活动阶段应进行地表实际位移观测,经数据处理后得到地面沉降曲线,以确保地面人类活动的安全;在采煤活动后阶段则实施灰色预测地面沉降,即通过采煤活动阶段的地表实际观测数据为历史原始数据序列,建立灰色Logistic模型;并对采煤活动后阶段的地面沉降进行预测。精度检验表明:灰色Logistic模型预测精度高,利用该模型预测地面沉降可减少地面沉降监测经费和实时提供预警信息,以确保开采区域内人们生命财产安全。  相似文献   
12.
Past changes and possible future variations in the nature of extreme precipitation and flood events in Central Europe and the Alpine region are examined from a physical standpoint. An overview is given of the following key contributory physical processes: (1) the variability of the large-scale atmospheric flow and the associated changes of the North-Atlantic storm track; (2) the feedback process between climate warming and the water cycle, and in particular the potential for more frequent heavy precipitation events; and (3) the catchment-scale hydrological processes associated with variations in major river flooding events and that are related to land-use changes, river training measures, and shifts in the proportion of rain to snowfall. In this context an account is provided of the possible future forecasting and warning methodologies based upon high-resolution weather prediction and runoff models. Also consideration is given to the detectability of past (future) changes in observed (modeled) extreme events. It is shown that their rarity and natural fluctuation largely impedes a detection of systematic variations. These effects restrict trend analysis of such events to return periods of below a few months. An illustration using daily precipitation from the Swiss Alps does yield evidence for pronounced trends of intense precipitation events (return period 30 days), while trends of stronger event classes are not detectable (but nevertheless can not be excluded). The small detection probability for extreme events limits possible mitigation of future damage costs through an abatement of climate change alone, and points to the desirability of developing improved early forecasting/warning systems as an additional no-regret strategy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
13.
The construction process contributes to pollutant emissions, particularly through the operation of diesel- and gasoline-powered equipment. In the past decade, a series of investigations were undertaken to quantify these emissions for a variety of non-road construction equipment performing different activities and undergoing different duty cycles, and a model to estimate quantities of six types of pollutant was developed. This paper uses that model to estimate emissions for four street and utility construction projects which no one has done previously. We combined information from company records with standard construction industry manuals to estimate total emissions for the projects and to examine the pollution patterns and magnitudes. The street construction projects all had similar emission profiles with a large peak at the beginning and a steady output of emissions throughout the duration of the project. For example, in two of the projects studied, half of all CO2 emissions were produced before the projects were 40% completed. Results showed that demolition and earthwork are the activities with the largest contribution. The equipment types with the largest contribution are backhoes, front-end loaders, bulldozers and trenchers. Trenchers, for example, produced 30% of all emissions on the projects on which they were used.  相似文献   
14.
One approach for performing uncertainty assessment in flood inundation modeling is to use an ensemble of models with different conceptualizations, parameters, and initial and boundary conditions that capture the factors contributing to uncertainty. However, the high computational expense of many hydraulic models renders their use impractical for ensemble forecasting. To address this challenge, we developed a rating curve library method for flood inundation forecasting. This method involves pre‐running a hydraulic model using multiple inflows and extracting rating curves, which prescribe a relation between streamflow and stage at various cross sections along a river reach. For a given streamflow, flood stage at each cross section is interpolated from the pre‐computed rating curve library to delineate flood inundation depths and extents at a lower computational cost. In this article, we describe the workflow for our rating curve library method and the Rating Curve based Automatic Flood Forecasting (RCAFF) software that automates this workflow. We also investigate the feasibility of using this method to transform ensemble streamflow forecasts into local, probabilistic flood inundation delineations for the Onion and Shoal Creeks in Austin, Texas. While our results show water surface elevations from RCAFF are comparable to those from the hydraulic models, the ensemble streamflow forecasts used as inputs to RCAFF are the largest source of uncertainty in predicting observed floods.  相似文献   
15.
在完成国家"863"项目"重点城市群大气复合污染综合防治技术与集成示范"(3c-star)的过程中,我们研发了具有自主知识产权的"区域大气环境综合管理和辅助决策系统",其中创造性地利用NetCDF、Silverlight、WebGIS、粒子系统、多媒体等技术实现了空气污染预测动态可视化数据展示。本文阐述了工作的背景、技术要点及成果。  相似文献   
16.
Abudu, S., J.P. King, Z. Sheng, 2011. Comparison of the Performance of Statistical Models in Forecasting Monthly Total Dissolved Solids in the Rio Grande. Journal of the American Water Resources Association (JAWRA) 48(1): 10‐23. DOI: 10.1111/j.1752‐1688.2011.00587.x Abstract: This paper presents the application of autoregressive integrated moving average (ARIMA), transfer function‐noise (TFN), and artificial neural networks (ANNs) modeling approaches in forecasting monthly total dissolved solids (TDS) of water in the Rio Grande at El Paso, Texas. Predictability analysis was performed between the precipitation, temperature, streamflow rates at the site, releases from upstream reservoirs, and monthly TDS using cross‐correlation statistical tests. The chi‐square test results indicated that the average monthly temperature and precipitation did not show significant predictability on monthly TDS series. The performances of one‐ to three‐month‐ahead model forecasts for the testing period of 1984‐1994 showed that the TFN model that incorporated the streamflow rates at the site and Caballo Reservoir release improved monthly TDS forecasts slightly better than the ARIMA models. Except for one‐month‐ahead forecasts, the ANN models using the streamflow rates at the site as inputs resulted in no significant improvements over the TFN models at two‐month‐ahead and three‐month‐ahead forecasts. For three‐month‐ahead forecasts, the simple ARIMA showed similar performance compared to all other models. The results of this study suggested that simple deseasonalized ARIMA models could be used in one‐ to three‐month‐ahead TDS forecasting at the study site with a simple, explicit model structure and similar model performance as the TFN and ANN models for better water management in the Basin.  相似文献   
17.
基于EFDC和WASP模型的突发水污染事故影响的预测预警   总被引:3,自引:0,他引:3  
近年来,我国突发水污染事故频发。长江作为我国最重要的水源地,其水质安全受到沿江众多化工企业可能突发污染事故的威胁。因此,开展南京化工园突发水污染事故影响的预测预警研究意义重大。基于EFDC和WASP模型,建立了南京化工园突发水污染事故影响的预测模型,并以龙翔甲苯罐区泄漏为例进行了事故情景模拟。研究表明:所建的预测模型能够对南京化工园突发水污染事故后污染物的水环境行为进行快速的模拟和预测,并且能够在地理信息系统的图层上以动画的形式实时展示事故影响的范围和程度,可以为南京化工园突发水污染事故的预警应急提供决策依据;基于EFDC构建的二维水动力模型能够较为准确地反映研究区的水动力情况;事故情景中排放的甲苯在研究江段能够较快地稀释扩散,挥发作用对甲苯的衰减过程影响显著,平水期比枯水期更有利于水体中甲苯的衰减  相似文献   
18.
ABSTRACT: The Pittsburgh District, U.S. Army Corps of Engineers, is responsible for operating two multipurpose reservoirs in the 7384 square mile (19198 square kilometer) Monongahela Basin. A third reservoir, presently under construction, will soon be operating. The real-time forecasting of runoff for operational purposes requires simulation of snow accumulation and snowmelt throughout the Basin during the winter season. This article describes capabilities of SNOSIM, a model being developed for performing such simulation. The application of this model as part of a comprehensive system of water control software, and some initial simulation results are presented.  相似文献   
19.
ABSTRACT: A cascade model for forecasting municipal water use one week or one month ahead, conditioned on rainfall estimates, is presented and evaluated. The model comprises four components: long term trend, seasonal cycle, autocorrelation and correlation with rainfall. The increased forecast accuracy obtained by the addition of each component is evaluated. The City of Deerfield Beach, Florida, is used as the application example with the calibration period from 1976–1980 and the forecast period the drought year of 1981. Forecast accuracy is measured by the average absolute relative error (AARE, the average absolute value of the difference between actual and forecasted use, divided by the actual use). A benchmark forecast is calculated by assuming that water use for a given week or month in 1981 is the same as the average for the corresponding period from 1976 to 1980. This method produces an AARE of 14.6 percent for one step ahead forecasts of monthly data and 15.8 percent for weekly data. A cascade model using trend, seasonality and autocorrelation produces forecasts with AARE of about 12 percent for both monthly and weekly data while adding a linear relationship of water use and rainfall reduces the AARE to 8 percent in both cases if it is assumed that rainfall is known during the forecast period. Simple rainfall predictions do not increase the forecast accuracy for water use so the major utility of relating water use and rainfall lies in forecasting various possible water use sequences conditioned on sequences of historical rainfall data.  相似文献   
20.
ABSTRACT: Time series models of the ARMAX class were investigated for use in forecasting daily riverflow resulting from combined snowmelt/rainfall. The Snowmelt Runoff Model (Martinec-Rango Model) is shown to have a form similar to the ARMAX model. The advantage of the ARMAX approach is that analytical model identification and parameter estimation techniques are available. In addition, previous forecast errors can be included to improve forecasts and confidence limits can be estimated for the forecasts. Diagnostic checks are available to determine if the model is performing properly. Finally, Kalman filtering can be used to allow the model parameters to vary continuously to reflect changing basin runoff conditions. The above advantages result in improved flow forecasts with fewer model parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号