首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1119篇
  免费   367篇
  国内免费   24篇
安全科学   162篇
废物处理   9篇
环保管理   437篇
综合类   57篇
基础理论   560篇
污染及防治   144篇
评价与监测   3篇
社会与环境   28篇
灾害及防治   110篇
  2024年   1篇
  2023年   6篇
  2022年   9篇
  2021年   15篇
  2020年   13篇
  2019年   66篇
  2018年   75篇
  2017年   123篇
  2016年   103篇
  2015年   105篇
  2014年   103篇
  2013年   391篇
  2012年   76篇
  2011年   94篇
  2010年   69篇
  2009年   41篇
  2008年   46篇
  2007年   37篇
  2006年   12篇
  2005年   12篇
  2004年   15篇
  2003年   15篇
  2002年   20篇
  2001年   21篇
  2000年   21篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   4篇
  1989年   2篇
  1988年   4篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有1510条查询结果,搜索用时 62 毫秒
141.
ABSTRACT: Bringing water from Colorado River via the Central Arizona Project was perceived as the sole solution for Tucson Basin's water problem. Soon after Central Arizona Project's water arrived in Tucson in 1992, its quality provoked a quarrel over its use for potable purposes. A significant outcome of that quarrel was the enactment of the 1995 Proposition 200. The Proposition 200 precludes the use of Central Arizona Project's water for potable purposes, unless it is treated. Yet, it encourages using it for non‐potable purposes and for replenishing the Tucson aquifer through recharge. This paper examines the economic issues involved in utilizing Central Arizona Project's water for recharge. Four planning scenarios were designed to measure and compare the costs and benefits with and without Central Arizona Project's water recharge. Cost‐benefit analysis was utilized to measure recharge costs and benefits and to derive a rough estimate of cost savings from preventing land subsidence. The results indicate that the institutional requirements can be met with Central Arizona Project's water recharge. The economic benefits from reducing pumping cost and saving groundwater are not economically significant. Yet, when combining the use of Central Arizona Project's water for recharge and non‐potable purposes, it demonstrates positive net economic benefits.  相似文献   
142.
ABSTRACT: The climate of Southern Arizona is dominated by summer precipitation, which accounts for over 60 percent of the annual total. Summer and non‐summer precipitation data from the USDA‐ARS Walnut Gulch Experimental Watershed are analyzed to identify trends in precipitation characteristics from 1956 to 1996. During this period, annual precipitation increased. The annual precipitation increase can be attributed to an increase in precipitation during non‐summer months, and is paralleled by an increase in the proportion of annual precipitation contributed during non‐summer months. This finding is consistent with previously reported increases in non‐summer precipitation in the southwestern United States. Detailed event data were analyzed to provide insight into the characteristics of precipitation events during this time period. Precipitation event data were characterized based on the number of events, event precipitation amount, 30‐minute event intensity, and event duration. The trend in non‐summer precipitation appears to be a result of increased event frequency since the number of events increased during nonsummer months, although the average amount per event, average event intensity, and average event duration did not. During the summer “monsoon” season, the frequency of recorded precipitation events increased but the average precipitation amount per event decreased. Knowledge of precipitation trends and the characteristics of events that make up a precipitation time series is a critical first step in understanding and managing water resources in semiarid ecosystems.  相似文献   
143.
对我国水资源可持续利用的一点思考   总被引:3,自引:0,他引:3  
姚红  单霞  左玉辉 《四川环境》2004,23(5):76-78
按照“认识——规划——建设”的思路,分析了我国水资源开发利用中所面临的主要问题和挑战,提出水资源可持续开发利用的策略和对策,特别提出分质供水和中水回用相结合的供水方式,作出了各地区重点建设项目的构想。  相似文献   
144.
AFS-830型双道原子荧光光度计同时测定饮用水中砷、汞   总被引:1,自引:0,他引:1  
主要探讨应用AFS-830型双道原子荧光光度计,在饮用水监测中同时测定水中砷、汞的方法和技术。此法是在硝酸介质,以硼氢化钠作还原剂,进行原子化,被测元素原子激发出荧光强度值在一定范围内与被测元素的浓度成正比。砷与汞的检出限分别为0.0618和0.0158ug/L。  相似文献   
145.
Abstract: Streams draining mountain headwater areas of the western Mojave Desert are commonly physically isolated from downstream hydrologic systems such as springs, playa lakes, wetlands, or larger streams and rivers by stream reaches that are dry much of the time. The physical isolation of surface flow in these streams may be broken for brief periods after rainfall or snowmelt when runoff is sufficient to allow flow along the entire stream reach. Despite the physical isolation of surface flow in these streams, they are an integral part of the hydrologic cycle. Water infiltrated from headwater streams moves through the unsaturated zone to recharge the underlying ground‐water system and eventually discharges to support springs, streamflow, isolated wetlands, or native vegetation. Water movement through thick unsaturated zones may require several hundred years and subsequent movement through the underlying ground‐water systems may require many thousands of years – contributing to the temporal isolation of mountain headwater streams.  相似文献   
146.
Abstract: Dissolved inorganic nitrogen (DIN) retention‐transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ~3 mg‐N/l to <0.1 mg‐N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification‐denitrification. Numerical simulations of seasonal hyporheic sediment nitrification‐denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989‐93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel features such as sloughs, wetlands and floodplains that provide surface water‐ground water connectivity, will be required to develop effective nitrate management strategies.  相似文献   
147.
Abstract: Thermoelectric power generation is responsible for the largest annual volume of water withdrawals in the United States although it is only a distant third after irrigation and industrial sectors in consumptive use. The substantial water withdrawals by thermoelectric power plants can have significant impacts on local surface and ground water sources, especially in arid regions. However, there are few studies of the determinants of water use in thermoelectric generation. Analysis of thermoelectric water use data in existing steam thermoelectric power plants shows that there is wide variability in unitary thermoelectric water use (in cubic decimeters per 1 kWh) within and among different types of cooling systems. Multiple‐regression models of unit thermoelectric water use were developed to identify significant determinants of unit thermoelectric water use. The high variability of unit usage rates indicates that there is a significant potential for water conservation in existing thermoelectric power plants.  相似文献   
148.
Abstract: The average annual base flow/recharge was determined for streamflow‐gaging stations throughout Wisconsin by base‐flow separation. A map of the State was prepared that shows the average annual base flow for the period 1970‐99 for watersheds at 118 gaging stations. Trend analysis was performed on 22 of the 118 streamflow‐gaging stations that had long‐term records, unregulated flow, and provided aerial coverage of the State. The analysis found that a statistically significant increasing trend was occurring for watersheds where the primary land use was agriculture. Most gaging stations where the land cover was forest had no significant trend. A method to estimate the average annual base flow at ungaged sites was developed by multiple‐regression analysis using basin characteristics. The equation with the lowest standard error of estimate, 9.5%, has drainage area, soil infiltration and base flow factor as independent variables. To determine the average annual base flow for smaller watersheds, estimates were made at low‐flow partial‐record stations in 3 of the 12 major river basins in Wisconsin. Regression equations were developed for each of the three major river basins using basin characteristics. Drainage area, soil infiltration, basin storage and base‐flow factor were the independent variables in the regression equations with the lowest standard error of estimate. The standard error of estimate ranged from 17% to 52% for the three river basins.  相似文献   
149.
Abstract: Previous investigations observed significant seepage losses from the Rio Grande to the shallow aquifer between Socorro and San Antonio, New Mexico. High‐resolution telescopic modeling was used along a 10‐km reach of the Rio Grande and associated drains and canals to evaluate several management alternatives aimed at improving river conveyance efficiency. Observed data consisted of ground‐water and surface‐water elevations, seepage rates along the Rio Grande and associated canals and drains, and borehole geology. Model calibration was achieved by adjusting hydraulic conductivity and specific storage until the output matched observed data. Sensitivity analyses indicated that the system was responsive to changes in hydrogeologic properties, especially when such alterations increased vertical connectivity between layers. The calibrated model predicted that removal of the low flow conveyance channel, a major channel draining the valley, would not only decrease river seepage by 67%, but also decrease total flow through the reach by 75%. The decreased flow through the reach would result in increased water logging and an average increase in ground‐water elevations of 1.21 meter. Simulations of the system with reduced riparian evapotranspiration rates or a relocated river channel also predicted decreased river seepage, but to a much lesser degree.  相似文献   
150.
Abstract

Glutathione content and glutahione‐dependent enzymes were measured in the liver of two fish species, gudgeon (Gobio gobio) and roach (Rutilus arcasii), from the river Bernesga (Spain) caught downstream and upstream of the waste site of several chemical industries. Animals from contaminated sites display a reduced glutathione concentration and a tendency to the decrease of glutathione S‐transferase activity. Glutathione peroxidase activity was significantly elevated only in the liver of Gobio gobio and glutathione reductase activity in that of Rutilus arcasii. Our data indicate that the glutathione system constitutes a sensitive biochemical indicator of chemical pollution. Relative changes of glutathione and glutathione‐dependent enzymes in both fish species suggest a different susceptibility to toxins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号