首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10016篇
  免费   1334篇
  国内免费   5539篇
安全科学   1981篇
废物处理   313篇
环保管理   979篇
综合类   9104篇
基础理论   1941篇
环境理论   2篇
污染及防治   1382篇
评价与监测   454篇
社会与环境   462篇
灾害及防治   271篇
  2024年   56篇
  2023年   424篇
  2022年   600篇
  2021年   683篇
  2020年   679篇
  2019年   680篇
  2018年   537篇
  2017年   513篇
  2016年   590篇
  2015年   682篇
  2014年   579篇
  2013年   1060篇
  2012年   1076篇
  2011年   1158篇
  2010年   755篇
  2009年   893篇
  2008年   745篇
  2007年   865篇
  2006年   855篇
  2005年   610篇
  2004年   508篇
  2003年   430篇
  2002年   312篇
  2001年   268篇
  2000年   252篇
  1999年   189篇
  1998年   137篇
  1997年   141篇
  1996年   106篇
  1995年   106篇
  1994年   70篇
  1993年   76篇
  1992年   47篇
  1991年   20篇
  1990年   24篇
  1989年   19篇
  1988年   15篇
  1987年   7篇
  1986年   10篇
  1984年   7篇
  1983年   11篇
  1982年   13篇
  1981年   9篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1975年   4篇
  1973年   5篇
  1972年   5篇
  1971年   35篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
801.
新型结构ABR的设计与水力特性研究   总被引:2,自引:1,他引:1  
针对ABR自身的缺点,设计出一种新型结构的ABR.该反应器为双层结构,共有5部分组成,各部分容积各不相同.该反应器的设计思想是将ABR与生物滤池以及活性炭吸附等工艺相联合.这种设计能够最大程度地发挥各工艺的优势,进而达到更好的处理效果.通过脉冲响应实验对该反应器的水力特性进行研究,得出不同水力停留时间(HRT)下的停留...  相似文献   
802.
A2O工艺好氧末段溶解氧变化对脱氮除磷影响   总被引:3,自引:0,他引:3  
采用连续流A2O工艺处理实际的生活污水,研究好氧末段在不同溶解氧(DO)浓度条件下对污泥沉降性能、系统脱氮除磷的影响,同时考察了DO对污泥硝化活性、厌氧释磷速率和反硝化脱氮速率的影响.结果表明,随着末段溶解氧的提高,污泥容积指数SVI从140降至100左右,后又升高到120~170;系统的硝化效果提高,氨氮的去除率从6...  相似文献   
803.
pH、盐度对微生物还原硫酸盐的影响研究   总被引:2,自引:1,他引:1  
采用厌氧生物处理工艺,研究了在不同盐度下pH连续降低对硫酸盐还原和有机物去除率的影响。实验结果表明,硫酸盐还原菌有很强的适应pH变化的能力,在pH值达到4以下仍有60%的硫酸盐去除率。NaCl浓度由4g/L增加到50g/L抑制了各厌氧菌的活性,导致硫酸盐和有机物去除率的下降,但硫酸盐还原菌耐受性高于产甲烷菌等其他厌氧菌,在NaCl浓度为50g/L下,硫酸盐去除率能达到50%,而有机物去除率则低于30%。qRT—PCR表明了系统菌落中SRB随着环境的变化情况与化学指标结果相一致,该反应器体系中SRB在整个厌氧菌群落中只占了很小部分。  相似文献   
804.
三元复合驱采出水中悬浮固体的控制方法   总被引:1,自引:0,他引:1  
采用向三元复合驱采出水中加入水质稳定剂的方法有效降低采出水中悬浮固体的质量浓度。实验结果表明,将100 g采出水依次经滤纸和孔径为0.45μm的醋酸纤维素膜过滤后,加入1.0 g WSBL-3型水质稳定剂,混合均匀后置于80℃的水浴中静置4 h,取出后再置于40℃的水浴中静置5 min,由此可将采出水中的悬浮固体质量浓度由107 mg/L降至2 mg/L。  相似文献   
805.
One approach for performing uncertainty assessment in flood inundation modeling is to use an ensemble of models with different conceptualizations, parameters, and initial and boundary conditions that capture the factors contributing to uncertainty. However, the high computational expense of many hydraulic models renders their use impractical for ensemble forecasting. To address this challenge, we developed a rating curve library method for flood inundation forecasting. This method involves pre‐running a hydraulic model using multiple inflows and extracting rating curves, which prescribe a relation between streamflow and stage at various cross sections along a river reach. For a given streamflow, flood stage at each cross section is interpolated from the pre‐computed rating curve library to delineate flood inundation depths and extents at a lower computational cost. In this article, we describe the workflow for our rating curve library method and the Rating Curve based Automatic Flood Forecasting (RCAFF) software that automates this workflow. We also investigate the feasibility of using this method to transform ensemble streamflow forecasts into local, probabilistic flood inundation delineations for the Onion and Shoal Creeks in Austin, Texas. While our results show water surface elevations from RCAFF are comparable to those from the hydraulic models, the ensemble streamflow forecasts used as inputs to RCAFF are the largest source of uncertainty in predicting observed floods.  相似文献   
806.
The power-voltage (P-V) characteristic curves of a PV array are nonlinear and have multiple peaks under partially shaded conditions (PSCs). This paper proposes a novel maximum power point tracking (MPPT) method for a PV system with reduced steady-state oscillation based on a two-stage particle swarm optimization (PSO) algorithm. The grouping method of the shuffled frog leaping algorithm (SFLA) is incorporated in the basic PSO algorithm (PSO-SFLA), ensuring fast and accurate searching of the global extremum. An adaptive speed factor is also introduced into the improved PSO to further enhance its convergence speed. Test results show that the proposed method converges in less than half the time taken by the conventional PSO method, and the power is improved by 33% under the worst PSCs, which confirms the superiority of the proposed method over the standard PSO algorithm in terms of tracking speed and steady-state oscillations under different PSCs.  相似文献   
807.
Dilute acid pretreatment and steam pretreatment were evaluated for maximum sugars release and ethanol production from sweet sorghum bagasse (SSB). The fermentation potential of the condensate and hydrolysate obtained from steam pretreatment (10 kg/cm2, 10 minutes) and dilute acid hydrolysis (1% (w/w) sulphuric acid, 25% substrate loading) respectively, was checked with Pichia stipitis NCIM 3497 and Debaryomyces hansenii sp. Ethanol production and yield using acid hydrolysate was higher with Debaryomyces hansenii sp. (28.4 g/L and 0.37 g/g respectively) as compared with Pichia stipitis NCIM 3497 (21.9 g/L and 0.29 g/g respectively).  相似文献   
808.
A solid-phase microextration-based sampling method was employed to determine the concentrations of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its metabolites, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD), 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (DDE) and 1-chloro-2,2-bis(p-chlorophenyl)ethene (DDMU), in two estuarine bays, Daya Bay and Hailing Bay, of South China. Six DDT components including p,p′-DDT, o,p′-DDD, p,p′-DDD, o,p′-DDE, p,p′-DDE, and p,p′-DDMU were detected in Hailing Bay, while only p,p′-DDD was found in Daya Bay. p,p′-DDD was the most abundant DDT component in both bays, sharply different from the previous finding in the water column of the Palos Verdes Shelf, California, USA that p,p′-DDE was prevalent. In addition, the occurrence of p,p′-DDMU (with a range of 0.047-0.21 ng/L in Hailing Bay) has not been reported around the globe, and its presence in our study region appeared to stem from dehydrochlorination of p,p′-DDD, favored under aerobic conditions, but further investigations are clearly needed to confirm the mechanism for generation of DDMU in estuarine environments.  相似文献   
809.

Background, aim and scope

Estrogenic and non-estrogenic chemicals typically co-occur in the environment. Interference by non-estrogenic chemicals may confound the assessment of the actual estrogenic activity of complex environmental samples. The aim of the present study was to investigate whether, in which way and how seriously the estrogenic activity of single estrogens and the observed and predicted joint action of estrogenic mixtures is influenced by toxic masking and synergistic modulation caused by non-estrogenic chemical confounders.

Materials and methods

The yeast estrogen screen (YES) was adapted so that toxicity and estrogenicity could be quantified simultaneously in one experimental run. Mercury, two organic solvents (dimethyl sulfoxide (DMSO) and 2,4-dinitroaniline), a surfactant (LAS-12) and the antibiotic cycloheximide were selected as toxic but non-estrogenic test chemicals. The confounding impact of selected concentrations of these toxicants on the estrogenic activity of the hormone 17ß-estradiol was determined by co-incubation experiments. In a second step, the impact of toxic masking and synergistic modulation on the predictability of the joint action of 17ß-estradiol, estrone and estriol mixtures by concentration addition was analysed.

Results

Each of the non-estrogenic chemicals reduced the apparent estrogenicity of both single estrogens and their mixtures if applied at high, toxic concentrations. Besides this common pattern, a highly substance- and concentration-dependent impact of the non-estrogenic toxicants was observable. The activity of 17ß-estradiol was still reduced in the presence of only low or non-toxic concentrations of 2,4-dinitroaniline and cycloheximide, which was not the case for mercury and DMSO. A clear synergistic modulation, i.e. an enhanced estrogenic activity, was induced by the presence of slightly toxic concentrations of LAS-12. The joint estrogenic activity of the mixture of estrogens was affected by toxic masking and synergistic modulation in direct proportion to the single estrogens, which allowed for an adequate adaptation of concentration addition and thus unaffected predictability of the joint estrogenicity in the presence of non-estrogenic confounders.

Discussion

The modified YES proved to be a reliable system for the simultaneous quantification of yeast toxicity and estrogen receptor activation. Experimental results substantiate the available evidence for toxic masking as a relevant phenomenon in estrogenicity assessment of complex environmental samples. Synergistic modulation of estrogenic activity by non-estrogenic confounders might be of lower importance. The concept of concentration addition is discussed as a valuable tool for estrogenicity assessment of complex mixtures, with deviations of the measured joint estrogenicity from predictions indicating the need for refined analyses.

Conclusions

Two major challenges are to be considered simultaneously for a reliable analysis of the estrogenic activity of complex mixtures: the identification of known and suspected estrogenic compounds in the sample as well as the substance- and effect-level-dependent confounding impact of non-estrogenic toxicants.

Recommendations and perspectives

The application of screening assays such as the YES to complex mixtures should be accompanied by measures that safeguard against false negative results which may be caused by non-estrogenic but toxic confounders. Simultaneous assessments of estrogenicity and toxicity are generally advisable.  相似文献   
810.
Background, aim, and scope  The enzyme-linked receptor assay (ELRA) detects estrogenic and anti-estrogenic effects at the molecular level of receptor binding and is a useful tool for the integrative assessment of ecotoxicological potentials caused by hormonally active agents (HAA) and endocrine disrupting compounds (EDC). The main advantage of the ELRA is its high sample throughput and its robustness against cytotoxicity and microbial contamination. After a methodological adaptation to salinity of the ELRA, according to the first part of this study, which increased its salinity tolerance and sensitivity for 17-β-estradiol, the optimised ELRA was used to investigate 13 native sediments characterised by different levels of salinity and chemical contamination. The applicability of the ELRA for routine analysis in environmental assessment was evaluated. Salinity is often a critical factor for bioassays in ecotoxicological sediment assessment. Therefore, salinity of the samples was additionally adjusted to different levels to characterise its influence on elution and binding processes of receptor-binding substances. Materials and methods  The ELRA was carried out with the human estrogen receptor α (ER) in a 96-well microplate format using the experimental setup known from the competitive immunoassay based on ligand–protein interaction. It is an important improvement that a physiologically relevant receptor was used as a linking protein instead of an antibody. The microplates were coated with a 17-β-estradiol-BSA conjugate, and dilution series of estradiol and of native sediment samples were added and incubated with the ER. After a washing step, a biotinylated mouse anti-ER antibody was added to each well. Receptor binding to estradiol, agonistic and antagonistic receptor binding, were determined by a streptavidin-POD-biotin complex with subsequent measurement of the peroxidase activity at the wavelength of 450 nm using a commercial ELISA multiplate reader. The sediment elutriates and pore water samples of sediments were tested in a dilution series to evaluate at which dilution step the receptor-binding potential ends. In the elution process (see Section 2.1 to 2.2), a method was developed to adjust the salinity to the levels of the reference testings, which offers an appropriate option to adjust the salinity in both directions. Statistical evaluation was made with a combination of the Mann–Whitney U test and the pT-method. Results  This part of the study characterised the environmental factor ‘salinity’ for prospective applications of the ELRA. Using reference substances such as 17-β-estradiol, the ELRA showed sigmoid concentration-effect relations over a broad range from 0.05 μg/l to 100 μg/l under physiological conditions. After methodological optimisation, both sensitivity and tolerance of the assay against salinity could be significantly raised, and the ELRA became applicable under salinity conditions up to concentrations of 20.5‰. The mean relative inter-test error (n = 3) was around 11% with reference substances and below 5% for single sediments elutriates in three replicates each. For sediment testings, the pore water and different salinity-adjusted elutriates of 13 sediments were used. A clear differentiation of the receptor-binding potential could be reached by application of the pT-method. Thereby, pT-values from one to six could be assigned to the sediments, and the deviation caused by the different salinity conditions was one pT-value. The mean standard deviation in the salinity adaptation procedure of the elutriates was below 5%. Discussion  Although the ELRA has already been used for assessments of wastewater, sludge and soil, its applicability for samples to different salinity levels has not been investigated so far. Even if the ELRA is not as sensitive as the E-screen or the YES-assay, with regard to reference substances like 17-β-estradiol, it is a very useful tool for pre-screening, because it is able to integrate both estrogenic as well as anti-estrogenic receptor-binding effects. According to the results of sediment testing, and given the integrative power to detect different directions of effects, the ELRA shows sufficient sensitivity and salinity tolerance to discriminate receptor-binding potentials in environmental samples. Conclusions  The optimised ELRA assay is a fast, cost-effective, reliable and highly reproducible tool that can be used for high-throughput screening in a microplate format in detecting both estrogenic and anti-estrogenic effects. Additionally, the ELRA is robust against microbial contaminations, and is not susceptible towards cytotoxic interferences like the common cell-culture methods. The general applicability and sufficient sensitivity of the ELRA was shown in freshwater environments. Marine and brackish samples can be measured up to salinity levels of 20.5‰. Recommendations and perspectives  In view of the proven sensitivity, functionality and the fastness of the ELRA, it is recommendable to standardise the test method. At the moment, no adequate in vitro test procedure exists which is standardised to DIN or ISO levels. The E-screen and the yeast estrogen/androgen screens (YES/YAS) sometimes underlie strong cytotoxic effects, as reported in the first part of this study. Further development of an ELRA assay using human androgen receptors appears to be very promising to gain information about androgenic and anti-androgenic effects, too. This would offer a possibility to use the ELRA as a fast and reliable pre-screening tool for the detection of endocrine potentials, thus minimising time and cost-expensive animal experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号