全文获取类型
收费全文 | 997篇 |
免费 | 138篇 |
国内免费 | 9篇 |
专业分类
安全科学 | 940篇 |
废物处理 | 5篇 |
环保管理 | 7篇 |
综合类 | 147篇 |
基础理论 | 7篇 |
污染及防治 | 3篇 |
评价与监测 | 1篇 |
社会与环境 | 4篇 |
灾害及防治 | 30篇 |
出版年
2023年 | 35篇 |
2022年 | 24篇 |
2021年 | 75篇 |
2020年 | 81篇 |
2019年 | 55篇 |
2018年 | 19篇 |
2017年 | 40篇 |
2016年 | 51篇 |
2015年 | 70篇 |
2014年 | 48篇 |
2013年 | 37篇 |
2012年 | 62篇 |
2011年 | 68篇 |
2010年 | 44篇 |
2009年 | 53篇 |
2008年 | 38篇 |
2007年 | 81篇 |
2006年 | 60篇 |
2005年 | 43篇 |
2004年 | 33篇 |
2003年 | 25篇 |
2002年 | 23篇 |
2001年 | 26篇 |
2000年 | 11篇 |
1999年 | 8篇 |
1998年 | 9篇 |
1997年 | 2篇 |
1996年 | 5篇 |
1995年 | 6篇 |
1994年 | 1篇 |
1991年 | 2篇 |
1990年 | 4篇 |
1989年 | 1篇 |
1988年 | 3篇 |
1977年 | 1篇 |
排序方式: 共有1144条查询结果,搜索用时 13 毫秒
61.
The global increase in the use of, and reliance on, plastics has prompted the demand for acrylonitrile-butadiene-styrene (ABS) resin in various fields. With this increased requirement, numerous failures have occurred in the ABS process. Those incidents, resulting from electrostatic discharge, powder accumulation, heat accumulation, construction sparks, and plant fires, have caused dust fire and explosions.In this study, the ABS resin was gleaned from the site and tested for its explosion parameters, including minimum ignition temperature of dust cloud (MITC), minimum ignition energy (MIE), and minimum explosion concentration (MEC). To improve loss prevention in the manufacturing process, ferric oxide (Fe2O3) as an inert additive was added in the ABS powder. According to the MIE test, Fe2O3 has an apparent inhibiting effect on dust explosion for the ABS dust. With the proportion of Fe2O3 increased from 25 to 50 mass% in ABS, the MIE increased from 67 to 540 mJ. The explosion tests via 20-L apparatus indicated that Fe2O3 mixed with ABS could not increase the MEC significantly. However, the explosion pressure dropped by increasing in the ratio of Fe2O3 in ABS. This inerting strategy of ABS was deemed to substantially lessen the probability and severity of fire and explosion. 相似文献
62.
An experimental device for evaluating the minimum ignition energy (MIE) of LDPE dust/ethylene hybrid mixture was built with the innovative mixing mode. The MIE of the hybrid mixture that contained ethylene below its lower explosive limit (LEL) was studied. The result indicated that adding a small amount of ethylene significantly reduced the MIE of the original dust cloud. All the MIEs with five different particle sizes were found to show similar trends of exponential attenuation with the increase of ethylene concentration; such attenuating effect grew as the dust particle size rose. When ethylene concentration increased and approached to its LEL, the reaction mechanism dominated by combustible dust turned into one dominated by combustible gas. The MIE decreased first and then increased with the dust mass and increased with the dust particle size. A multifactor mathematical correlation model of the MIE with the dust particle size and ethylene concentration was developed. 相似文献
63.
Hydrogen is considered an excellent clean fuel with potential applications in several fields. There are serious safety concerns associated with the hydrogen process. These concerns need to be thoroughly understood and addressed to ensure its safe operation. To better understand the safety challenges of hydrogen use, application, and process, it is essential to undertake a detailed risk analysis. This can be achieved by performing detailed consequence modellings and assessing risk using the computational fluid dynamics (CFD) approach. This study comprehensively reviews and analyses safety challenges related to hydrogen, focusing on hydrogen storage, transmission, and application processes. Range of release and dispersion scenarios are investigated to analyse associated hazards. Approaches to quantitative risk assessment are also briefly discussed. 相似文献
64.
In order to explore the influence of attapulgite powder on the methane explosion, a small-size semi-closed visual explosion experiment platform was built, and experiments were carried out. The effect of spraying powder on the whole process of methane explosion was studied when methane concentration was 7%, 8%, 9.5%, 11% and 12%, respectively. When the methane concentration was 11%, the maximum explosion overpressure dropped by modified spraying attapulgite powder was as high as 33.26%, and at the same time, the reduction rate of flame propagation velocity reached the maximum value of 36.65%. Furthermore, when the methane concentration was 9.5%, the experimental results when the powder spraying amount of modified attapulgite was 120 mg, 160 mg, 200 mg, 240 mg and 280 mg showed that when the powder spraying was 240 mg, the maximum explosive overpressure decreased by 33.14%, and the reduction rate of the peak flame propagation velocity reached the maximum value of 33.73%. Through the video images recorded by the high-speed camera, the flame structure, shape, color, etc. Were analyzed. The characterization analysis illustrated that the modified attapulgite powder has a small particle size, relatively large porosity and specific surface area. Also, it has a high weight loss rate. Combined with the results of characterization analysis, the explosion suppression mechanism of modified attapulgite powder was discussed. It was found that the modified attapulgite powder could effectively absorb the active free radicals generated in the explosion, and the modified new chemical components have a better thermal decomposition and endothermic effect and a better suppression of methane explosions. 相似文献
65.
To study the mechanism of the suppressing effect of Expanded Aluminium (EA) on the premixed gas explosion, premixed methane-air and propane-air gases were undergone explosion reaction in the presence of EA in a self-designed closed pipeline with the overpressures and the compositions, rates and sensitivities of products analyzed. The results showed that the 9.5% methane-air and 5% propane-air explosions produced peak pressures decreased by 79.3% and 65.6%, and residual methane and propane contents increased by 270% and 560% respectively than without EA. In addition, the results revealed that the explosions of propane in the presence of EA produced less methane and carbon oxides contents, but more ethylene and propylene contents. The simulation showed that H, O, and OH are the key factors affecting the rate of products. The product compositions, together with other parameters, suggested that EA decreased temperature, inhibited chain initiation and propagation reaction, but facilitated chain termination reaction by advancing and accelerating the gas phase and wall destruction reaction of radicals, especially collisions and concentration of key free radicals. This new research method based on the analysis of explosion products can be used for in-depth research into gas explosion features and shed light on the suppressing mechanism of EA in flammable gas explosion. 相似文献
66.
Among the factors influencing dust explosion, the particle size distribution (PSD) is both one of the most important and complex to consider. For instance, it is commonly accepted that the explosion sensitivity increases when the particle size decreases. Such an assertion may be questionable for nano-objects which easily agglomerate. However, agglomerates can be broken during the dispersion process. Correlating the explosion parameters to the actual PSD of a dust cloud at the moment of the ignition becomes then essential. The effects of the moisture content and sieving were investigated on a nanocellulose powder and the impact of a mechanical agglomeration was evaluated using a silicon coated by carbon powder. Each sample was characterized before and after dispersion using in situ laser particle size measurement and a fast mobility particle sizer, and explosion and minimum ignition energy tests were conducted respectively in a 20 L sphere and in a modified Hartmann tube. It was observed that drying and/or sieving the nanocellulose mainly led to variations in terms of ignition sensitivity but only slightly modified the explosion severity. In contrast, the mechanical agglomeration of the silicon coated by carbon led to a great decrease in terms of ignition sensitivity, with a minimum ignition energy varying from 5 mJ for the raw powder to more than 1J for the agglomerated samples. The maximum rate of pressure rise also decreased due to modifications in the reaction kinetics, inducing a transition from St2 class to St1 class when agglomerating the dust. 相似文献
67.
68.
用事故树分析法进行炼厂油罐爆炸事故的环境风险评价 总被引:5,自引:0,他引:5
论述了风险、风险评价、环境风险评价的概念及其主要内容,说明利用事故树分析法进行工程环境风险评价的程序和方法。并运用这种方法对某炼厂油罐爆炸事故进行了大气环境风险评价。 相似文献
69.
70.
Yi-hui ZhouMing-shu Bi Feng Qi 《Journal of Loss Prevention in the Process Industries》2012,25(1):127-130
An experimental system including pressure transducer, data acquisition card, computer and electric spark ignition device was set up to research methane-coal dust hybrid explosions in closed tubes with different types of obstacles inside. Its dynamic response time was less than a millisecond and the test precision was 0.1%. The experimental results show that the obstacles had great effects on the explosion characteristics in the tube. Hollow obstacles linked with inner wall of the tube induced faster pressure rising than installed center blocked solid obstacles. Obstacles with more sharp corner induce more violent explosions. The most dangerous explosion occurred when spacing between obstacles almost equaled the inner diameter of the tube for the same size obstacle. 相似文献