首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2262篇
  免费   205篇
  国内免费   441篇
安全科学   402篇
废物处理   62篇
环保管理   514篇
综合类   1019篇
基础理论   218篇
污染及防治   266篇
评价与监测   86篇
社会与环境   99篇
灾害及防治   242篇
  2024年   6篇
  2023年   24篇
  2022年   59篇
  2021年   80篇
  2020年   84篇
  2019年   55篇
  2018年   59篇
  2017年   91篇
  2016年   106篇
  2015年   118篇
  2014年   131篇
  2013年   155篇
  2012年   165篇
  2011年   173篇
  2010年   136篇
  2009年   142篇
  2008年   106篇
  2007年   158篇
  2006年   135篇
  2005年   139篇
  2004年   99篇
  2003年   86篇
  2002年   75篇
  2001年   68篇
  2000年   79篇
  1999年   44篇
  1998年   28篇
  1997年   33篇
  1996年   21篇
  1995年   37篇
  1994年   20篇
  1993年   25篇
  1992年   17篇
  1991年   11篇
  1990年   11篇
  1989年   12篇
  1988年   10篇
  1987年   15篇
  1986年   10篇
  1985年   6篇
  1983年   5篇
  1982年   6篇
  1981年   11篇
  1980年   11篇
  1979年   7篇
  1978年   7篇
  1975年   4篇
  1972年   7篇
  1971年   8篇
  1970年   3篇
排序方式: 共有2908条查询结果,搜索用时 640 毫秒
171.
供水管网的抗震功能是指供水管网在地震作用下能够满足震后城市特定用水需要(需水量和水压)的能力。地震发生后,供水管网一般处于低压供水状态,使得管网中部分用户的水压和水量不能得到全部满足,导致管网部分节点的实际配水量小于需水量。为此,在传统的管网水力分析基础上考虑节点流量随节点水压的动态变化,通过求解非线性水力方程组,得到管网节点实际流量和水压;同时,借鉴结构可靠度分析方法,引入供水管网系统随机水力模型,给出了震后供水管网功能可靠度分析的一次二阶矩方法。以一实际管网为例,演示了震后低压供水时管网功能可靠度分析的应用方法。  相似文献   
172.
VIC模型与SWAT模型在中小流域径流模拟中的对比研究   总被引:3,自引:0,他引:3  
结合GIS与RS技术的分布式水文模型已成为当今水文界研究的重点。从气象与水文水资源学科交叉的角度对分布式水文模型VIC模型与SWAT模型进行研究,并将其应用于白莲河流域,以此探讨该模型在中小流域的适用性。模拟结果表明,VIC模型与SWAT模型在白莲河流域率定期与检验期的模拟效果相差很小。SWAT模型的效率系数与相关系数略高一些,SWAT模型的模拟效果比较平均,每年相差不大;但VIC模型在1995年和1999年模拟效果明显好于其它年份,尤其在2002年,VIC模型模拟的洪峰与实测的相差较大,从而影响总体的效率系数偏低,而SWAT模型模拟的更接近实测值。研究结果表明两种模型对于我国中小流域的径流模拟具有一定的适用性.  相似文献   
173.
Landscape-geochemical features providing for manifestation of gigantism in herbaceous plants have been revealed in natural habitats in the south of Sakhalin and Kunashir islands. Tall herb assemblages have proved to be associated with geochemical landscapes characterized by reducing (gley or hydrogen sulfide) conditions and increased contents of petroleum hydrocarbons and some trace elements (total and movable forms). A hypothesis is put forward that gigantism in herbaceous plants is manifested in zones of active faults, which serve as a kind of conduits supplying endogenous heat, matter, and water to the root systems.  相似文献   
174.
This study numerically investigates the influence of initial water content and rain intensities on the preferential migration of two fluorescent tracers, Acid Yellow 7 (AY7) and Sulforhodamine B (SB), through variably-saturated fractured clayey till. The simulations are based on the numerical model HydroGeoSphere, which solves 3D variably-saturated flow and solute transport in discretely-fractured porous media. Using detailed knowledge of the matrix, fracture, and biopore properties, the numerical model is calibrated and validated against experimental high-resolution tracer images/data collected under dry and wet soil conditions and for three different rain events. The model could reproduce reasonably well the observed preferential migration of AY7 and SB through the fractured till, although it did not capture the exact depth of migration and the negligible impact of the dead-end biopores in a near-saturated matrix. A sensitivity analysis suggests fast flow mechanisms and dynamic surface coating in the biopores, and the presence of a plough pan in the till.  相似文献   
175.
The boundary between preferential flow and Richards-type flow is a priori set at a volumetric soil water content θ at which soil water diffusivity D (θ) = η (= 10− 6 m2 s− 1), where η is the kinematic viscosity. First we estimated with a hydrostatic approach from soil water retention curves the boundary, θK, between the structural pore domain, in which preferential flow occurs, and the matrix pore domain, in which Richards-type flow occurs. We then compared θK with θ that was derived from the respective soil hydrological property functions of same soil sample. Second, from in situ investigations we determined 96 values of θG as the terminal soil water contents that established themselves when the corresponding water-content waves of preferential flow have practically ceased. We compared the frequency distribution of θG with the one of θ that was calculated from the respective soil hydrological property functions of 32 soil samples that were determined with pressure plate apparatuses in the laboratory. There is support of the notion that θK θ≈ θ, thus indicating the potential of θ to explain more generally what constitutes preferential flow. However, the support is assessed as working hypothesis on which to base further research rather than a procedure to a clear-cut identification of preferential flow and associated flow paths.  相似文献   
176.
Impact of initial and boundary conditions on preferential flow   总被引:4,自引:1,他引:3  
Preferential flow in soil is approached by a water-content wave, WCW, that proceeds downward from the ground surface. WCWs were obtained from sprinkler experiments with infiltration rates varying from 5 to 40 mm h− 1. TDR-probes and tensiometers measured volumetric water contents θ(z,t) at seven depths, and capillary heads, h(z,t) at six depths in a column of an undisturbed soil. The wave is characterized by the velocity of the wetting front, cW, the amplitude, wS, and the final water content, θ. We tested with uni-variate and bi-variate linear regressions the impacts of initial volumetric water contents, θini, and input rates, qS, on cW, wS and θ.The test showed that θini influenced θ and wS and qS effected cW. The expected proportionality of wS ≈ qs1/3 was weak and cW ≈ qs2/3 was strong.  相似文献   
177.
Monitoring of contaminant concentrations, e.g., for the estimation of mass discharge or contaminant degradation rates, often is based on point measurements at observation wells. In addition to the problem, that point measurements may not be spatially representative, a further complication may arise due to the temporal dynamics of groundwater flow, which may cause a concentration measurement to be not temporally representative. This paper presents results from a numerical modeling study focusing on temporal variations of the groundwater flow direction. “Measurements” are obtained from point information representing observation wells installed along control planes using different well frequencies and configurations. Results of the scenario simulations show that temporally variable flow conditions can lead to significant temporal fluctuations of the concentration and thus are a substantial source of uncertainty for point measurements. Temporal variation of point concentration measurements may be as high as the average concentration determined, especially near the plume fringe, even when assuming a homogeneous distribution of the hydraulic conductivity. If a heterogeneous hydraulic conductivity field is present, the concentration variability due to a fluctuating groundwater flow direction varies significantly within the control plane and between the different realizations. Determination of contaminant mass fluxes is also influenced by the temporal variability of the concentration measurement, especially for large spacings of the observation wells. Passive dosimeter sampling is found to be appropriate for evaluating the stationarity of contaminant plumes as well as for estimating average concentrations over time when the plume has fully developed. Representative sampling has to be performed over several periods of groundwater flow fluctuation. For the determination of mass fluxes at heterogeneous sites, however, local fluxes, which may vary considerably along a control plane, have to be accounted for. Here, dosimeter sampling in combination with time integrated local water flux measurements can improve mass flux estimates under dynamic flow conditions.  相似文献   
178.
This study characterizes layer- and local-scale heterogeneities in hydraulic parameters (i.e., matrix permeability and porosity) and investigates the relative effect of layer- and local-scale heterogeneities on the uncertainty assessment of unsaturated flow and tracer transport in the unsaturated zone of Yucca Mountain, USA. The layer-scale heterogeneity is specific to hydrogeologic layers with layerwise properties, while the local-scale heterogeneity refers to the spatial variation of hydraulic properties within a layer. A Monte Carlo method is used to estimate mean, variance, and 5th, and 95th percentiles for the quantities of interest (e.g., matrix saturation and normalized cumulative mass arrival). Model simulations of unsaturated flow are evaluated by comparing the simulated and observed matrix saturations. Local-scale heterogeneity is examined by comparing the results of this study with those of the previous study that only considers layer-scale heterogeneity. We find that local-scale heterogeneity significantly increases predictive uncertainty in the percolation fluxes and tracer plumes, whereas the mean predictions are only slightly affected by the local-scale heterogeneity. The mean travel time of the conservative and reactive tracers to the water table in the early stage increases significantly due to the local-scale heterogeneity, while the influence of local-scale heterogeneity on travel time gradually decreases over time. Layer-scale heterogeneity is more important than local-scale heterogeneity for simulating overall tracer travel time, suggesting that it would be more cost-effective to reduce the layer-scale parameter uncertainty in order to reduce predictive uncertainty in tracer transport.  相似文献   
179.
Abstract: The Soil and Water Assessment Tool (SWAT) model was evaluated for estimation of continuous daily flow based on limited flow measurements in the Upper Oyster Creek (UOC) watershed. SWAT was calibrated against limited measured flow data and then validated. The Nash‐Sutcliffe model Efficiency (NSE) and mean relative error values of daily flow estimations were 0.66 and 15% for calibration, and 0.56 and 4% for validation, respectively. Also, further evaluation of the model’s estimation of flow at multiple locations was conducted with parametric paired t‐test and nonparametric sign test at a 95% confidence level. Among the five main stem stations, four stations were statistically shown to have good agreement between predicted and measured flows. SWAT underestimated the flow of the fifth main stem station possibly because of the existence of complex flood control measures near to the station. SWAT estimated the daily flow at one tributary station well, but with relatively large errors for the other two tributaries. The spatial pattern of predicted flows matched the measured ones well. Overall, it was concluded from the graphical comparisons and statistical analyses of the model results that SWAT was capable of reproducing continuous daily flows based on limited flow data as is the case in the UOC watershed.  相似文献   
180.
Abstract: An adaptive management framework is applied to the problem of identifying mitigation measures for sediment deposition near bridge crossings in small streams in the Northern Tier region of northern Pennsylvania. The presence of the rigid bridge infrastructure introduces a challenge for applying adaptive management practices, because the integrity of the bridge structure itself has to be maintained regardless of the mitigation practices used in the stream channel near the bridge. In an effort to overcome the unacceptable risk that field‐scale adaptive management experiments present to rigid bridge infrastructure, an adaptive management approach for laboratory‐scale experimentation of mitigation methods at bridge crossings in the Northern Tier region is presented as a way to decrease the level of uncertainty about channel response to mitigation measures and increase the rate of learning about the effectiveness of these measures. Four cycles of adaptive management experiments are discussed to demonstrate that this approach results in fast and efficient learning about channel response to mitigation methods for the given conditions. The value of monitoring and of assessment of monitored data in the overall efficiency of the adaptive management approach is highlighted. Assessment of what was learned in the adaptive management experiment cycles presented here leads to new directions to continually improve management policies and practices in stream channels at bridge crossings in the Northern Tier region. The adaptive management process, rather than continuing with a normally risk‐averse management approach, results in opportunities for learning new information about a system’s response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号