全文获取类型
收费全文 | 22536篇 |
免费 | 1666篇 |
国内免费 | 3085篇 |
专业分类
安全科学 | 7097篇 |
废物处理 | 347篇 |
环保管理 | 2963篇 |
综合类 | 10712篇 |
基础理论 | 1613篇 |
环境理论 | 15篇 |
污染及防治 | 1533篇 |
评价与监测 | 860篇 |
社会与环境 | 1194篇 |
灾害及防治 | 953篇 |
出版年
2024年 | 78篇 |
2023年 | 404篇 |
2022年 | 669篇 |
2021年 | 876篇 |
2020年 | 924篇 |
2019年 | 785篇 |
2018年 | 545篇 |
2017年 | 949篇 |
2016年 | 936篇 |
2015年 | 1100篇 |
2014年 | 960篇 |
2013年 | 1207篇 |
2012年 | 1537篇 |
2011年 | 1692篇 |
2010年 | 1199篇 |
2009年 | 1338篇 |
2008年 | 913篇 |
2007年 | 1529篇 |
2006年 | 1554篇 |
2005年 | 1300篇 |
2004年 | 1074篇 |
2003年 | 1018篇 |
2002年 | 877篇 |
2001年 | 712篇 |
2000年 | 622篇 |
1999年 | 570篇 |
1998年 | 389篇 |
1997年 | 306篇 |
1996年 | 222篇 |
1995年 | 214篇 |
1994年 | 178篇 |
1993年 | 167篇 |
1992年 | 98篇 |
1991年 | 63篇 |
1990年 | 48篇 |
1989年 | 24篇 |
1988年 | 32篇 |
1987年 | 17篇 |
1986年 | 10篇 |
1985年 | 12篇 |
1984年 | 22篇 |
1983年 | 16篇 |
1982年 | 13篇 |
1981年 | 10篇 |
1980年 | 16篇 |
1979年 | 16篇 |
1974年 | 5篇 |
1973年 | 7篇 |
1972年 | 5篇 |
1971年 | 13篇 |
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
复杂地下空间交通体系作为新型地下交通形式,车流量大且存在多个分合流点,气流组织复杂,防灾排烟难度极大。以杭州某复杂地下空间交通体系连接匝道为研究背景,提出匝道通风排烟设计方法,再选取其中二合一式连接匝道结构,采用FLUENT模拟其两种防灾排烟方案的有效性。模拟结果表明:两个连接匝道末端单独设置排烟口的设计方案可有效保证火源下游车辆和火源上游人员的逃生安全;根据分合流流速分配理论模型,在合流处只设置一个排烟口且排烟量提高40 m3/s时,也可达到同样的防灾排烟效果,从土建成本考虑,推荐此方案,为同类型隧道结构提供借鉴。 相似文献
62.
为深入了解古建筑火灾事故致因因素,提高古建筑消防安全管理水平,基于事故致因理论,采用德尔菲法从人员、古建筑消防系统、古建筑防火能力、安全管理与环境五个方面确定18个古建筑火灾致因因素,并建立古建筑火灾事故评价指标体系。同时运用实验室决策分析法(DEMATEL)构建矩阵对古建筑火灾致因因素进行分析。一方面,通过原因度定量结果对古建筑火灾致因因素的属性进行分类,确定其属于火灾原因因素还是结果因素;另一方面,通过中心度指标评价古建筑火灾各个致因因素的重要程度。进而利用解释结构模型(ISM)将致因因素进行层级划分,构建5层3阶的多级递阶模型,分析致因因素间的耦合和交互关系。结果表明,古建筑火灾事故的发生是近邻原因、过渡原因及本质原因共同作用的结果,并针对这三方面确定古建筑火灾事故重点管控方向。同时,在古建筑消防安全管理中,应重点关注中心度较大的致因因素。 相似文献
63.
Though dynamic operation of chemical processes has been extensively explored theoretically in contexts such as economic model predictive control or even considering the potential for cyberattacks on control systems creating non-standard operating policies, important practical questions remain regarding dynamic operation. In this work, we look at two of these with particular relevance to process safety: (1) evaluating dynamic operating policies with respect to process equipment fidelity and (2) evaluating procedures for determining the parameters of an advanced control law that can promote both dynamic operation as well as safety if appropriately designed. Regarding the first topic, we utilize computational fluid dynamics and finite element analysis simulations to analyze how cyberattacks on control systems could impact a metric for stress in equipment (maximum Von Mises stress) over time. Subsequently, we develop reduced-order models showing how both a process variable and maximum Von Mises stress vary over time in response to temperature variations at the boundary of the equipment, to use in evaluating how advanced control frameworks might impact and consider the stress. We close by investigating options for obtaining parameters of an economic model predictive control design that would need to meet a variety of theoretical requirements for safety guarantees to hold. This provides insights on practical safety aspects of control theory, and also indicates relationships between control and design from a safety perspective that highlight further relationships between design and control under dynamic operation to deepen perspectives from the computational fluid dynamics and finite element analysis discussions. 相似文献
64.
Miners' unsafe behavior (UB) is the main cause of coal mine accidents. Previous research has suggested that excessive noise in tunnels impacts miners' temperaments and safe production behavior. To explore the influence of noise on UB, four different dimensions of noise annoyance were identified: cognitive, emotional, communication, and physical mechanism annoyance. The coal mine noise annoyance scale, miners' unsafe behavior intention (UBI) scale, and miners’ UB scale were developed according to different dimensions. In the first survey, a total of 200 questionnaires were distributed in the two coal mines, and 193 valid questionnaires were recovered. Exploratory factor analysis was conducted, and invalid items were removed according to the analysis results to form the final scale. Then, 500 final scales were distributed in two Chinese coal mines, and 482 valid questionnaires were collected. Confirmatory factor analysis was conducted by collating the data of the second questionnaire. Based upon the structural equation model (SEM), the SEM of the influence of noise annoyance degree on UB and the path analysis with latent variable path analysis with the latent variables (PA-LVs) mediating model of the effect of UBI on UB were established, and the path coefficients with fitting data of the model were analyzed. The results indicated that the four dimensions of coal mine noise annoyance had a strong positive impact on UB, which was reduced by less noise annoyance. In addition, the Bootstrap method was used to verify the mediating method among the four dimensions of noise annoyance, cognitive annoyance, emotional annoyance, with communication annoyance indirectly affecting UB through UBI. The research results provide theoretical support for reducing the UB of miners and improving coal mine safety levels. 相似文献
65.
The disaster scene in three-dimensional (3D) plays a crucial role in disaster emergency management and risk communication of oil transmission stations. However, existing research for the disaster scene mainly focuses on reproducing the disaster environment and rarely predicts the damage state of the disaster-affected object. This paper proposes an object-oriented modeling method that utilizes a multilevel decomposition pattern for disaster scenes. This method combines earthquake vulnerability assessment with 3D visualization technology to predict and characterize the damage state of critical infrastructure in oil transmission stations. To enhance earthquake risk perception, a simulation system is designed and developed, which allows for the construction of virtual scenes and quick simulation of disaster scenes in 3D. The case application shows that the system improves the 3D modeling efficiency of disaster scenes and enhances public awareness of earthquake risks. The simulation system can provide technical support for seismic mitigation planning and emergency management decision-making at oil transmission stations and has good application prospects. 相似文献
66.
Accidents in the process industry involve several interacting factors, including human and organizational factors (HOFs). A long-standing obstacle to HOFs analysis is lack of data. Accident reports are an essential data source to learn from the past and contain HOFs-related data, but they are usually unstructured text in a not standardized format. Some studies have explored the extraction of information automatically from accident reports based on Natural Language Processing (NLP) techniques. However, they were not dedicated to HOFs. Risk communication is considered an essential pillar in safety and risk science. This research develops a HOFs-focused risk communication framework based on the NLP techniques that can support risk assessment and mitigation. The proposed approach automatically extracts the target groups oriented “Who, When, Where, Why” (4Ws) information from accident reports.This framework was applied to explore the eMARS database. The results show that the “4Ws” skeleton of narratives has appreciated performance in pattern recognition and holistic information analysis. The graphical representation interfaces are designed to display the features of HOFs-related accidents, which can better be communicated to the sharp-end operators and decision-makers. 相似文献
67.
Accidents in university laboratories not only create a great threat to students’ safety but bring significant negative social impact. This paper investigates the university laboratory safety in China using questionnaire and Bayesian network (BN) analysis. Sixteen influencing factors for building the Bayesian net were firstly identified. A questionnaire was distributed to graduate students at 60 universities in China to acquire the probability of safe/unsafe conditions for sixteen influencing factors, based on which the conditional probability of four key factors (human, equipment and material, environment, and management) was calculated using the fuzzy triangular theory and expert judgment. The determined conditional probability was used to develop a Bayesian network model for the risk analysis of university laboratory safety and identification of the main reasons behind the accidents. Questionnaire results showed that management problems are prominent due to insufficient safety education training and weak management level of management personnel. The calculated unsafe state probability was found to be 65.2%. In the BN analysis, the human factor was found to play the most important role, followed by equipment and material factor. Sensitive and inferential analysis showed that the most sensitive factors are personnel incorrect operation, illegal operation, and experiment equipment failure. Based on the analysis, countermeasures were proposed to improve the safe management and operation of university laboratories. 相似文献
68.
Leakage and explosion of hazardous chemicals during road transportation can cause serious building damage and casualties, and adoption of highly-efficient emergency rescue measures plays a critical role in reducing accidental hazards. Considering a liquefied petroleum gas (LPG) transport tanker explosion accident that occurred in Wenling, Zhejiang Province, China on June 13, 2020 as example, this study proposes a risk assessment framework. This framework recreates the leakage and explosion of the accident process using FLACS v10.9, suggests plans for evacuation, describes the rescue areas of different levels, and explores the influence of environmental factors on the evacuation and rescue areas. The results show that simulated and predicted distributions of fuel vapour cloud concentration and explosion overpressure can provide a reference basis for rapid rescue activities; the characterization of the dynamic effects of wind speed, wind direction, and temperature with respect to the evacuation and rescue areas can be used as theoretical support for on-site adjustment of rescue forces. The role of obstacles can prevent the expansion of the evacuation areas under low wind-speed conditions, and the presence of highly congested obstacles determines the level of the rescue area. The results obtained are important for the risk analysis and the development of emergency rescue measures in case of explosion accidents associated with transportation of hazardous chemicals on high-hazard and high-sensitive road sections. 相似文献
69.
70.
砷(As)和镉(Cd)是稻田土壤中最常见的有毒有害重金属元素,且易从土壤迁移到水稻籽粒中.目前,我国稻田土壤中As和Cd及其复合污染现象普遍,对粮食安全和人体健康均构成了严重威胁.As和Cd在土壤中的环境行为相反,对As-Cd复合污染的同步治理是当前水稻安全生产的关键技术难点.通过综述近年来同步阻控水稻对As和Cd吸收以及转运的若干实用技术,包括水分管理、钝化技术、淋洗技术、电动修复技术、植物修复技术、低累积水稻品种的选取以及叶面阻控技术,归纳并分析了各种技术的处理效果、作用机制和制约因素,提出了主要阻控技术的发展方向,指出构建区域高适配性综合技术模式的重要性,以期为稻田As-Cd复合污染治理和水稻安全生产提供参考. 相似文献