全文获取类型
收费全文 | 704篇 |
免费 | 118篇 |
国内免费 | 697篇 |
专业分类
安全科学 | 25篇 |
废物处理 | 62篇 |
环保管理 | 42篇 |
综合类 | 935篇 |
基础理论 | 76篇 |
污染及防治 | 214篇 |
评价与监测 | 153篇 |
社会与环境 | 9篇 |
灾害及防治 | 3篇 |
出版年
2024年 | 14篇 |
2023年 | 86篇 |
2022年 | 116篇 |
2021年 | 113篇 |
2020年 | 94篇 |
2019年 | 81篇 |
2018年 | 54篇 |
2017年 | 98篇 |
2016年 | 45篇 |
2015年 | 53篇 |
2014年 | 54篇 |
2013年 | 73篇 |
2012年 | 75篇 |
2011年 | 63篇 |
2010年 | 47篇 |
2009年 | 47篇 |
2008年 | 27篇 |
2007年 | 55篇 |
2006年 | 64篇 |
2005年 | 41篇 |
2004年 | 25篇 |
2003年 | 33篇 |
2002年 | 24篇 |
2001年 | 27篇 |
2000年 | 33篇 |
1999年 | 21篇 |
1998年 | 6篇 |
1997年 | 6篇 |
1996年 | 11篇 |
1995年 | 11篇 |
1994年 | 7篇 |
1993年 | 5篇 |
1992年 | 3篇 |
1990年 | 3篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有1519条查询结果,搜索用时 15 毫秒
81.
O3对水稻叶片氮代谢、脯氨酸和谷胱甘肽含量的影响 总被引:2,自引:0,他引:2
臭氧(O3)被认为是重要的气污染物之一,水稻又是主要的粮食作物,因而准确地评估O3浓度升高对水稻生长发育的影响具有十分重要的意义。采用开顶式气室法模拟研究了O3对水稻叶片可见伤害症状、氮代谢、脯氨酸和谷胱甘肽含量的影响。结果显示,O3污染胁迫会导致水稻叶片产生明显的伤害症状,具体表现为:老叶叶鞘褪绿,有褐斑,直至完全干枯;稻穗小且黄化,籽粒不饱满;水稻成熟期提前等。O3浓度升高对水稻叶片的硝酸还原酶活性有显著影响。当O3浓度为40、80和120nL.L-1时,水稻叶片硝酸还原酶活性与对照组相比均降低,其中,分蘖期分别降低了25.3%、67.4%和86.3%;拔节期分别降低了57.4%、75.7%和97.8%;抽穗期分别降低了91.0%、97.2%和99.3%;乳熟期分别降低了89.5%、89.5%和96.7%。水稻叶片铵态氮和硝态氮含量随着O3浓度的升高而显著地降低,例如当O3浓度为40、80和120nL.L-1时,与对照相比,水稻叶片硝态氮含量分别降低46.3%、52.7%和65.7%,铵态氮含量分别降低6.5%、12.9%和43.4%。O3污染胁迫下水稻叶片脯氨酸含量在不同生长期变化不同,分蘖期、拔节期和抽穗期脯氨酸含量在40nL.L-1浓度O3熏蒸下急剧地提高,但是随着O3浓度的增加,脯氨酸含量又不断地降低。在水稻乳熟期,脯氨酸含量均随着O3浓度的增加而显著地下降。O3污染胁迫导致水稻叶片还原型谷胱甘肽(GSH)含量显著低于对照组,而氧化型谷胱甘肽(GSSG)含量显著高于对照组。当O3浓度为40、80和120nL.L-1时,乳熟期水稻叶片GSH含量分别比对照组降低68.7%、80.2%和78.2%,GSSG含量分别比对照提高494.4%、527.2%和439.8%。研究表明,O3污染胁迫对水稻叶片氮代谢和抗氧化系统产生了极显著的影响。 相似文献
82.
83.
为了解南京市溧水区大气挥发性有机物(VOCs)的组分、来源及其对臭氧的贡献,2021年对区域内VOCs开展了为期1 a的走航监测,进行数据分析.结果表明,溧水区ρ(TVOC)年均值为223.45μg·m-3,其中ρ(烷烃)为49.45μg·m-3(占比22.13%),ρ[含氧(氮)VOCs]为50.63μg·m-3(占比22.66%),ρ(卤代烃)为64.73μg·m-3(占比28.95%),ρ(芳香烃)为35.46μg·m-3(占比15.87%),ρ(烯烃)为18.26μg·m-3(占比8.19%),其他为4.9μg·m-3(占比2.2%).夏季的ρ(TVOC)平均值较高,为263.75μg·m-3,冬季较低,为187.2μg·m-3,春季为246.11μg·m-3,秋季为204.77μg·m-3.日均TVOC浓度,在09:00~10:00和14... 相似文献
84.
基于OMI数据的东南沿海大气臭氧浓度时空分布特征研究 总被引:1,自引:0,他引:1
基于臭氧监测仪(OMI)卫星反演数据,对2005—2018年东南沿海5省区域大气臭氧柱浓度数据进行提取及分析,探讨其时空分布格局及影响因素.结果表明:①在时间变化上,14年间,该区域大气臭氧柱浓度整体呈先上升后下降的趋势,2005—2013年臭氧柱浓度持续升高,最高值为324.52 DU,高值区不断向南部区域扩大;2013—2018年臭氧柱浓度呈下降趋势,最低值为228.27 DU,但在2017、2018年略有上升.②在空间分布上,臭氧柱浓度自北向南逐渐降低,高值区集中分布在江苏及浙江省北部;低值区集中于福建省南部及广东省大部分地区.③在季节变化上,大体呈现出春夏季高于秋冬季,高值区在春夏季交替出现,秋季略高于冬季,但差异不明显.④稳定性分析表明:研究区臭氧柱浓度整体呈现中部分散、南北部集聚、差异较显著的分布格局.⑤自然因素中,风向、气温均呈现显著正相关,江淮地区的梅雨季节(降水)及华南地区的台风和暴雨也起到显著作用.⑥人文因素中,臭氧柱浓度与地区生产总值、各产业生产总值及机动车保有量均表现出正相关,其中,臭氧柱浓度与第二产业的相关度最高.另外,臭氧柱浓度与NO_x排放量表现出显著相关性.VOC_s对臭氧柱浓度的影响中,工业源是主控因素,交通源和居民源次之,电厂源对臭氧柱浓度的影响最弱.这进一步说明臭氧浓度的变化受到了诸多因素的综合影响,但气温、NO_x及VOC_s的排放是臭氧浓度变化的主导因素. 相似文献
85.
根据污染源头控制和废水回用的要求,对典型棉针织染整厂的不同生产过程废水排水水质特征进行了统计分析,提出了较实用的废水源头清浊分流方案。在此基础上重点研究了混凝-臭氧组合工艺对清废水处理效果,确定了最优的工艺条件。结果表明,清废水主要为洗水,占废水总量的25%~30%;混凝-臭氧组合工艺的最优工艺条件为:pH为6~9,PAC投加量为48 mg/L,PAM投加量为1.0 mg/L,臭氧接触时间为12 min(臭氧浓度为14.5 mg/L),这时,清废水COD、色度去除率分别为71%和98%,实践证明,出水水质完全能够满足染整生产。 相似文献
86.
以黄花夹竹桃(Thevetia peruviana(Pers.)k.Schum.)和芒果(Mangifera indica L.)苗木为材料,研究4种臭氧(O3)体积分数[环境大气NF,φ(O3)=10×10-9~20×10-9;低体积分数处理E50,φ(O3)=50×10-9;中体积分数处理E100,φ(O3)=100×10-9;高体积分数处理E200,φ(O3)=200×10-9]下两种植物叶片膜脂过氧化程度、可溶性蛋白质质量分数、可溶性糖质量分数和保护酶活性的变化情况,旨在揭示地表臭氧体积分数升高条件下2种植物生理代谢活动变化机理及响应规律。结果表明:随臭氧体积分数的增加,2种植物丙二醛含量和膜透性均逐渐上升,且与臭氧体积分数呈显著正相关关系,说明两种植物膜脂过氧化程度加剧;低体积分数O3处理时两种植物可溶性蛋白质量分数均逐渐下降,高φ(O3)处理后小幅回升;黄花夹竹桃可溶性糖质量分数逐渐下降,芒果先上升后下降;2种植物的POD活性均显著上升,但上升幅度有较大差异;2种植物的CAT活性均呈先升高再降低的趋势。研究表明,不同体积分数的臭氧暴露下,黄花夹竹桃和芒果均受到不同程度的伤害,芒果对臭氧表现出较强的抗性,黄花夹竹桃对臭氧较敏感。 相似文献
87.
北京城区夏季O3化学生成过程 总被引:1,自引:2,他引:1
选取2007年7月1日—8月31日中的21个晴空日,利用观测资料和光化学箱模式计算了北京城区测点的O3生成速率G(O3)和O3生成效率OPE.结果表明,21个晴空日中G(O3)日最高小时值分布在(18~82)×10-9h-1之间;在O3污染和非污染日G(O3)最高值的平均水平无显著差异,且与Ox浓度之间不存在一致的对应关系,表明O3化学生成过程不能全面解释地面O3浓度的累积,物理传输过程对测点O3实测浓度有显著作用;各个化学过程对G(O3)的贡献率对比结果显示,HO2 在 NO向NO2的转化中贡献最大;OPE值分布在2.8~5.8之间,总体水平为4.1±0.1;OPE值与NOx浓度之间为非线性关系,OPE值随NOx浓度的增加而减少,表明消减测点附近VOCs排放能有效降低O3浓度. 相似文献
88.
89.
利用2008年6月1日~2009年5月31日在北京城区中国气象局(CMA),及其西南方向固城站(GCH)和东北方向上甸子本底站(SDZ)的近地面O3等观测数据,分析了O3的变化特征及其与其他污染物和气象要素的关系.结果表明,上甸子本底站近地面O3的季节变化和日变化规律与固城和北京城区站存在一定的差异,而固城站和北京城区站的O3变化特征差异较小.相关性分析显示,O3与NO、NO2、NOx、RH多呈负相关,且相关性冬季好于夏季,此外,O3与气温和风速呈正相关,其中北京城区站冬季和夏季O3与风速的相关性差异最明显.O3浓度与地面风向有一定关系,当风向为偏南时,O3浓度较高,当风向为东北时,O3浓度偏低. 相似文献
90.