首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   29篇
  国内免费   175篇
安全科学   36篇
废物处理   99篇
环保管理   45篇
综合类   277篇
基础理论   75篇
污染及防治   106篇
评价与监测   8篇
社会与环境   2篇
  2023年   1篇
  2022年   7篇
  2021年   5篇
  2020年   8篇
  2019年   9篇
  2018年   9篇
  2017年   11篇
  2016年   14篇
  2015年   18篇
  2014年   24篇
  2013年   39篇
  2012年   41篇
  2011年   35篇
  2010年   32篇
  2009年   31篇
  2008年   35篇
  2007年   34篇
  2006年   35篇
  2005年   35篇
  2004年   38篇
  2003年   32篇
  2002年   21篇
  2001年   21篇
  2000年   24篇
  1999年   20篇
  1998年   12篇
  1997年   21篇
  1996年   10篇
  1995年   15篇
  1994年   5篇
  1993年   4篇
  1990年   2篇
排序方式: 共有648条查询结果,搜索用时 15 毫秒
41.
The amine-modified polyhydroxyethylmethacrylate (poly(HEMA))-grafted biomaterial (tamarind fruit shell, TFS) carrying carboxyl functional groups at the chain end (PGTFS-COOH) was prepared and used as an adsorbent for the removal of uranium(VI) from water and nuclear industry wastewater. FTIR spectral analysis revealed that U(VI) ions and PGTFS-COOH formed a chelate complex. The adsorption process was relatively fast, requiring only 120 min to attain equilibrium. The adsorption kinetic data were best described by the pseudo-second-order equation. The equilibrium adsorption data were correlated with the Sips isotherm model. The maximum U(VI) ions uptake with PGTFS-COOH was estimated to be 100.79 mg/g. The complete removal of 10 mg/L U(VI) from simulated nuclear industry wastewater was achieved by 3.5 g/L PGTFS-COOH. The reusability of the adsorbent was demonstrated over 4 cycles using NaCl (1.0 M) + HCl (0.5 M) solution mixture to de-extract the U(VI). The results show that the PGTFS-COOH tested is very promising for the recovery of U(VI) from water and wastewater.  相似文献   
42.
Abstract

For the production of controlled‐release agricultural formulations microencapsulation technologies are now the most used. Over the past two decades enormous progress has been made in order to develop the technologies which allow us to produce formulations tailor made to reach the target and fitting our toxicological requirements. This lecture is devoted to the definition of the criteria for selection of an active ingredient for microencapsulation and to a detailed review of the various techniques used today in commerçai microencapsulated formulations.

Resources are increasingly allocated into microencapsulation research & development by many agrochemical companies. Therefore the next 20 years should continue to yield innovative ideas including significant improvement of the physico‐chemical and toxicological properties of the actual formulations on the market. Some of this new ideas are applied by our company in order to modify or improve those properties playing the key role in the intent for targeted activity:

√ Recombination during production or upon storage.

New protective colloides

Dermal toxicity (LD 50) ‐ secondary protective colloides.

√ Release rate parameters.

Modification by the change of mobility of the active ingredient from the core (solvent or fluid type) affecting transit time and therefore LD 50 values.

√ Oral toxicity (LD 50).

Graft copolymers irreversibly adsorbed to the capsule surface.  相似文献   
43.
Corn starch and zein mixtures (4 : 1 dry weight) were extruded and injection-molded in the presence of plasticizers (glycerol and water). Tensile strength and percentage elongation of the molded plastics were measured before and after 1 week of storage under a dry or humid condition (11 or 93% RH). With 10–12% glycerol and 6–8% water, injection-molded plastics had relatively good tensile properties (20- to 25-MPa tensile strength and 3.5–4.7% elongation). But while exposed to dry conditions (11% RH), the molded plastics lost weight (0.5–1.5% in 7 days) and became very brittle, with significant decreases in tensile strength and elongation. Partial replacement (5–10%) of starch with a maltodextrin (average DE 5) reduced the glass transition and melting temperatures of the starch-zein mixture as well as the dry storage stability. Using potato starch instead of corn starch significantly improved the dry storage stability of the injection-molded starch-zein plastics (18- vs 11-MPa tensile strength). Anionic corn starches with a maleate or succinate group (DS<0.01) produced injection-molded plastics with improved tensile properties and storage stability. Plastics prepared from the starch maleate and zein mixture retained the strength during 1 week of dry storage without a significant change (26-MPa tensile strength and 3.7% elongation after 1 week of storage).Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.Journal paper No. J-15561 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2863.  相似文献   
44.
The starch content and its composition have important consequences for the yield of the harvested crop and the materials extracted from it. The functional properties of the foods or other processed materials derived from these crops are also affected by the structure and composition of the starch. Recently, genetic engineering has been used to produce plants with an elevated starch content, achieved by transforming the plant with a mutated bacterial gene coding for an ADPglucose pyrophosphorylase that is active in the presence of metabolites which inhibit the plant enzyme. Besides the practical implications of these results, this experiment provided direct evidence for the regulatory role of the ADPglucose pyrophosphorylase in starch synthesis. Other bacterial enzymes, such as glycogen synthase and branching enzyme, could be introduced in order to modify starch structure. However, a more elegant (but longer-term) approach would be to learn enough about the structure-function relationships of the plant enzymes so that the product of their action could be changed. To achieve this objective, much more will have to be learned about the enzymes involved in the biosynthesis of starch than is presently known. Here, the basic properties of starch and the current research approaches to understanding its biosynthesis are described, together with a perspective of how genetic manipulation of starch structure may be achieved.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.  相似文献   
45.
Methylenediphenyl diisocyanate was found to improve the interfacial interaction between poly(lactic acid)(PLA) and granular starch. The objective of this research was to study the effect of starch moisture content on the interfacial interaction of an equal-weight blend of wheat starch and PLA containing 0.5% methylenediphenyl diisocyanate by weight. Starch moisture (10% to 20%) had a negative effect on the interfacial binding between starch and PLA. The tensile strength and elongation of the blend both decreased as starch moisture content increased. At 20% moisture level, the starch granules embedded in the PLA matrix were observed to be swollen, resulting in poor strength properties and high water absorption by the blend.  相似文献   
46.
The nature and distribution of the acetylated groups were evaluated by 13C-NMR and 1H-NMR. The starch substrate with a DS of 1.5 comprises only two patterns: -(14)-d-glucopyranose and 2,3,6-tri-O-acetyl--(14)-d-glucopyranose. The starch with a DS of 3.0 also comprises two patterns: 2,3,4,6-tetra-O-acetyl--(14)-d-glucopyranose and 2,3,6-tri-O-acetyl--(14)-d-glucopyranose; whereas starch (DS = 1.9) contains 4 patterns: 2,3,6-tri-O-acetyl--(14)-d-glucopyranose, 2,3,4,6-tetra-O-acetyl--(14)-d-glucopyranose terminal, 2,6-di-O-acetyl--(14)-d-glucopyranose, and 3,6-di-O-acetyl--(14)-d-glucopyranose. Using esterase from Viscozyme, it has been possible to hydrolyze up to 7% of the DS 3.0 starch. An -amylase (Fungamyl 800) was then added to these acetylesterases. With a 2.4 FAU/mL fraction of -amylase and 2.4 U/mL from the Viscozyme's acetylesterase, 28% of the acetylated end groups were hydrolyzed for the starch substrates with DS 3.0. Moreover, a synergic action between -amylase and acetylesterase was noticed, allowing fragmentation of 32% for DS 1.5, 30% for DS 1.9, and 11% for DS 3.0.  相似文献   
47.
研究了用聚合氯化铝(PAC)、聚合硫酸铁(PFS)、聚丙烯酰胺(PAM)及改性蒙托石等不同无机—有机高分子絮凝剂复配使用处理炼钢厂连铸含油废水的除油效果,考察了不同絮凝剂的复配以及絮凝剂的不同复配比例对处理效果的影响。试验结果表明,用聚合氯化铝(PAC)+聚合硫酸铁(PFS)+聚丙烯酰胺(PAM)3种絮凝剂复配使用除油效果最佳,当3种絮凝剂的复配比为2∶2∶3时除油效果最好,除油率达到88.2%,达到国家排放标准。  相似文献   
48.
Acrylamide (ACR) is a chemical frequently used in both industrial and synthetic processes and may be produced during food processing. ACR at very high concentrations is postulated to exert its toxicity through the stimulation of an oxidative stress. ACR in excessive doses induces the central nervous system, reproduction, and genetic toxicity. However, ACR effects on the liver, a major organ of drug metabolism, have not been adequately explored. In addition, the role of mitochondria in an ACR-mediated hepatotoxicity is still unclear. The aim of this study was to investigate the cytotoxic mechanisms attributed to ACR using isolated rat hepatocytes. Hepatocytes were isolated by the collagenase perfusion method and incubated with an EC502hr concentration of ACR for 3 hr. The EC502 hr of ACR on isolated rat hepatocytes was determined to be 1 mM. Based on our results, hepatocytes cytotoxicity of ACR (1 mM) was mediated by a reactive oxygen species formation and lipid peroxidation. Incubation of hepatocytes with ACR produced rapid hepatocyte glutathione depletion which is another marker of the cellular oxidative stress. ACR cytotoxicity was also associated with mitochondrial injury as evidenced by the decline of mitochondrial membrane potential and lysosomal membrane leakiness. Our results also showed that ACR induced caspase-3 activation, the final mediator of apoptosis signaling. These findings contribute to a better understanding underlying mechanisms involved in ACR hepatotoxicity originating from the oxidative stress and ending in mitochondrial/lysosomal damage and cell death signaling.  相似文献   
49.
主要研究了不同类废弃有机物厌氧产酸过程中产生的挥发性脂肪酸的产量和组成比例。研究发现,废糖蜜溶液、蛋白废液和淀粉废液在达到最高产酸量时,超过50%的VFAs是乙酸,其次是丙酸,还含有少量的丁酸和戊酸。废甘油溶液在达到最高产酸量时,产生的VFAs的主要成分是丙酸。4种有机废液中,相同初始COD浓度条件下,淀粉废液产生的VFAs产量最多,初始COD为5000mg/L时最高产量为2.321g/L,其次是废甘油溶液,最高产量是2.244g/L。  相似文献   
50.
Environmental conditions causing stress have a significant effect on the generative organs of Scotch pine. The parameters characterizing pine pollen are subject to significant interannual variations and are closely connected with weather and climatic conditions in the period of pollen formation. Airborne pollutants affect the quality of pine pollen, which is especially apparent in the years favorable for the formation of microspores. The ability of Scotch pine pollen to germinate and form pollen tubes in the regions with different technogenic loads proved to be significantly lower than in tree stands of the background areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号