首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  国内免费   30篇
安全科学   3篇
环保管理   2篇
综合类   31篇
基础理论   3篇
污染及防治   16篇
  2022年   1篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
41.
考察了pH值、搅拌时间、Mg∶N和N∶P摩尔比对鸟粪石化学沉淀法(MAP)去除垃圾渗滤液中低浓度氨氮的影响,使用Design Expert 7.1.3进行3水平4因素响应曲面中心复合设计优化实验,并通过二次多项式拟合和参数优化,得到:当pH为10,搅拌时间为30 min,Mg∶N摩尔比为1.41,N∶P摩尔比为1.34时,氨氮去除率(Y1)可以达到最大值71.2%,体系中的残留PO34--P浓度(Y2)趋近于零,达到我国《生活垃圾填埋场污染控制标准排放标准》的排放标准。此外,X射线衍射图谱的分析表明大部分沉淀物质为磷酸铵镁。  相似文献   
42.
采用激光粒度仪实验测定了小型套管式空气曝气填料层磷回收装置中不同条件下生成的鸟粪石晶体的体积平均粒径,考察了其变化规律,并结合Stokes公式计算了晶体的沉降速率,同时考虑鸟粪石晶体形状的影响,进行了相应的修正。实验结果表明,鸟粪石的粒径在10~200 μm之间,主要集中于20~100 μm;在磷回收装置中添加填料并通入空气有利于增大鸟粪石晶体的粒径和沉降速度,无填料无空气时和有填料有空气时的平均粒径分别在30~55 μm和40~65 μm之间。随着pH值的增大,鸟粪石晶体的粒径和沉降速度逐渐增大,但当pH大于9.0后,鸟粪石晶体的粒径和沉降速度又逐渐减小;氮磷比值从1:1增大到2:1,鸟粪石晶体的粒径和沉降速度小幅度增加,氮磷比进一步增大,鸟粪石晶体的粒径和沉降速度基本不变;镁磷摩尔比在1:1~1.2:1的范围内时,鸟粪石晶体的平均粒径和沉降速度随镁磷比的增大而增大;镁磷摩尔比大于1.2:1后,鸟粪石晶体的平均粒径和沉降速度随镁磷比的增大逐渐减小;初始磷浓度越高,鸟粪石晶体的平均粒径和沉降速度越大。  相似文献   
43.
投药方式对鸟粪石法脱氮除磷的影响   总被引:3,自引:1,他引:3  
鸟粪石法脱氮除磷过程中,投药方式对反应产生很大影响.以MgCl2·6H2O和Na2HPO4·12H2O为沉淀剂进行脱氮除磷的实验研究,结果表明,药剂的投加顺序影响不大,加药速度以缓慢加药为宜,pH值调节时机对氮磷的去除率影响很大,pH值调节时机由前调改为后调,氨氮的去除率由70%左右提高至80%~85%,磷的去除率由6...  相似文献   
44.
载镁天然沸石复合材料对污水中氮磷的同步回收   总被引:4,自引:3,他引:1  
成雪君  王学江  王浩  张志昊  赵建夫 《环境科学》2017,38(12):5139-5145
采用载镁天然沸石为沉淀剂,以鸟粪石的形式回收模拟污水中的营养物质,考察了投加量、溶液pH、反应时间和共存Ca~(2+)对回收过程的影响,并利用FTIR、XRD、BET和SEM等手段对回收沉淀产物进行了化学组分和表面形貌分析,以揭示其回收机制.结果表明当材料投加量为0.4 g·L~(-1),溶液初始pH为7,反应时间为2 h时,载镁天然沸石对溶液中磷酸盐和氨氮的回收性能最佳,最大吸附量分别高达119.2 mg·g~(-1)和48.5 mg·g~(-1).载镁天然沸石对溶液中磷酸盐和氨氮的回收过程均符合拟二级动力学模型(R~20.99).载镁天然沸石对污水中营养物质的回收机制有鸟粪石化学沉淀、物理吸附、离子交换和静电吸附等,其中以鸟粪石沉淀法为主.共存Ca~(2+)会干扰载镁沸石对溶液中氮磷的同步回收,导致回收的沉淀组分除鸟粪石晶体外,还会存在部分磷酸钙等副产物.  相似文献   
45.
鸟粪石-沸石复合材料对水中镉的吸附性能研究   总被引:2,自引:0,他引:2  
研究以氧化镁负载沸石回收污水中氮磷得到的鸟粪石-沸石复合材料(STR-NZ)为吸附剂,用于对水体中重金属镉的吸附去除.实验采用SEM-EDS、XRD和FTIR等手段对STR-NZ材料进行表征,并考察了投加量、初始pH和反应时间等对STR-NZ材料去除水中Cd~(2+)的影响.结果表明:氧化镁负载沸石材料主要以鸟粪石沉淀的方式实现对水中磷酸盐和氨氮的回收;STR-NZ对水溶液中Cd~(2+)的吸附量随pH的增大呈先增加后趋于平衡的趋势,当Cd~(2+)的初始浓度为50 mg·L~(-1)时,STR-NZ的最佳投加量为0.2 g·L~(-1),Cd~(2+)最大吸附量为249.35 mg·g~(-1), STR-NZ对Cd~(2+)的吸附动力学符合准二级动力学模型,对Cd~(2+)的等温吸附符合Langmuir等温吸附模型,STR-NZ主要通过Cd_5(PO_4)_3(OH)沉淀的方式实现对水中Cd~(2+)的去除.  相似文献   
46.
采用激光粒度仪实验测定了小型套管式空气曝气填料层磷回收装置中不同条件下生成的鸟粪石晶体的体积平均粒径,考察了其变化规律,并结合Stokes公式计算了晶体的沉降速率,同时考虑鸟粪石晶体形状的影响,进行了相应的修正。实验结果表明,鸟粪石的粒径在10—200μm之间,主要集中于20~100μm;在磷回收装置中添加填料并通人空气有利于增大鸟粪石晶体的粒径和沉降速度,无填料无空气时和有填料有空气时的平均粒径分别在30~55μm和40~65μm之间。随着pH值的增大,鸟粪石晶体的粒径和沉降速度逐渐增大,但当pH大于9.0后,鸟粪石晶体的粒径和沉降速度又逐渐减小;氮磷比值从1:1增大到2:1,鸟粪石晶体的粒径和沉降速度小幅度增加,氮磷比进一步增大,鸟粪石晶体的粒径和沉降速度基本不变;镁磷摩尔比在1:1—1.2:1的范围内时,鸟粪石晶体的平均粒径和沉降速度随镁磷比的增大而增大;镁磷摩尔比大于1.2:1后,鸟粪石晶体的平均粒径和沉降速度随镁磷比的增大逐渐减小;初始磷浓度越高,鸟粪石晶体的平均粒径和沉降速度越大。  相似文献   
47.
为了从污染水体中去除磷并有效回收磷资源,本文研究了海绵铁改性前后吸附除磷特性,并构建海绵铁除磷渗滤床,考察了其连续流除磷特性及再生活化方法,并探究再生废液中磷回收生成鸟粪石的工艺条件.结果表明:硫酸改性后的海绵铁对磷的最大理论吸附容量从改性前4.17 mg·g~(-1)提升至18.18 mg·g~(-1).吸附饱和的改性海绵铁,采用1 mol·L~(-1)氢氧化钠解吸和6%硫酸再活化后,能够达到98%的活化率.海绵铁除磷渗滤床在长达约200 d的连续流运行实验中表现出良好的除磷能力,在进水TP=10 mg·L~(-1),HRT=1 h条件下,磷综合去除率达30%~89%,累积单位容积磷吸附量达到6.95 kg·m~(-3).海绵铁碱再生后的废液可以用于回收鸟粪石,其最佳生成条件为:pH=10,n(Mg~(2+))∶n(PO_4~(3-))∶n(NH~+_4)=1.3∶1∶1.1.在最优条件下,磷回收率可以达到97.8%.本研究提供的方法对于污染水体中磷营养元素的去除及回收利用具有理论与实践意义.  相似文献   
48.
使用化学平衡软件Visual MINTEQ计算拟合鸟粪石(磷酸镁铵,MgNH4PO4·6H2O,MAP)沉淀去除氨氮的平衡体系在不同pH值条件下Mg2+、NH4+和PO34-各组分的变化及饱和指数(SI)的变化.实验和预测结果表明,模型对MAP沉淀平衡体系拟合良好.在本研究的pH值范围内(8.0—11.0),化学平衡模型VisualMINTEQ能预测敞开体系氨氮废水中通过磷酸铵镁沉淀去除的NH4+-N,但不能用来预测敞开体系中所有氨氮的去除,即预测结果中不包括由于氨气挥发而去除的氨氮.  相似文献   
49.
磷回收技术的研发现状及发展趋势   总被引:18,自引:6,他引:12  
磷是地球上一种不可自然再生的有限资源,磷的这一属性近年来已诱使国际磷矿石价格一路飙升,较10年前翻了6番.与此同时,全球范围内普遍存在着陆地磷矿产资源日益匮乏与水环境中磷含量过高而导致水体富营养化这一矛盾.这样的资源与环境现状目前正推动着以"回收"磷代替"去除"磷之理念的快速传播与研发技术的实际应用;从污水以及动物粪尿中发掘"第二磷矿"的设想目前正被国际社会所日益青睐.2009年5月"第4届从污水中回收营养物国际会议"高度浓缩了当今世界有关磷回收技术的研发与应用现状.以此次会议内容为主线,结合其他方面最新研究与应用成果,首先对磷回收偏爱产物——鸟粪石形成的pH等重要反应条件之基础性研究成果进行了概述.其次,详细阐述了磷回收技术的研发进展,除传统的化学沉淀、结晶、吸附/解吸附等方法外,还着重介绍了尿液源分离、MBR、纳米技术、丝状聚磷微生物、生物浸取/生物富集、生物铁工艺等新型磷回收技术,以及动物粪尿磷回收、污泥及肉骨焚烧灰回收磷与生物质磷回收技术.最后,以实例说明磷回收产物在农业和水产养殖业方面的尝试效果,并对磷回收未来技术发展趋势进行了宏观展望.  相似文献   
50.
本研究以实验室模拟的高浓度氮磷废水为研究对象,采用折流式反应器,探讨了在动态条件下,pH、Mg:P、N:P及水力停留时间对鸟粪石法脱氮除磷的影响。试验结果表明:对于氨氮的去除率,以上四个因素影响相当;对于磷的除率,各因素的影响大小为:N:P〉pH〉Mg:P〉水力停留时间。当模拟水样中的TP浓度为310mg/l,pH为9.7,水力停留时间为60min,Mg:N:P=1.2:1.2:l时,氨氮和磷的去除率分别可高迭85.8%和86.3%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号