全文获取类型
收费全文 | 1635篇 |
免费 | 194篇 |
国内免费 | 1143篇 |
专业分类
安全科学 | 66篇 |
废物处理 | 45篇 |
环保管理 | 177篇 |
综合类 | 1717篇 |
基础理论 | 350篇 |
污染及防治 | 413篇 |
评价与监测 | 152篇 |
社会与环境 | 52篇 |
出版年
2024年 | 11篇 |
2023年 | 69篇 |
2022年 | 113篇 |
2021年 | 137篇 |
2020年 | 139篇 |
2019年 | 127篇 |
2018年 | 107篇 |
2017年 | 119篇 |
2016年 | 155篇 |
2015年 | 153篇 |
2014年 | 126篇 |
2013年 | 178篇 |
2012年 | 158篇 |
2011年 | 173篇 |
2010年 | 148篇 |
2009年 | 128篇 |
2008年 | 133篇 |
2007年 | 115篇 |
2006年 | 132篇 |
2005年 | 84篇 |
2004年 | 67篇 |
2003年 | 86篇 |
2002年 | 54篇 |
2001年 | 33篇 |
2000年 | 35篇 |
1999年 | 31篇 |
1998年 | 29篇 |
1997年 | 26篇 |
1996年 | 23篇 |
1995年 | 18篇 |
1994年 | 8篇 |
1993年 | 9篇 |
1992年 | 5篇 |
1991年 | 12篇 |
1990年 | 1篇 |
1988年 | 4篇 |
1987年 | 4篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1977年 | 2篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有2972条查询结果,搜索用时 15 毫秒
161.
162.
主要研究了不同浓度的天然溶解性有机物(DOM)对单片膜被动采样技术的影响.结果表明,DOM的存在会影响膜吸附有机污染物的能力:当lg KOW为3~5时,DOM对膜吸附有机物的影响较小;当lg KOW5.5时,DOM会显著增强膜的吸附能力.同时,通过低密度聚乙烯膜(LDPE)被动采样技术对太子河流域3个表层沉积物的孔隙水进行多环芳烃类(PAHs)和邻苯二甲酸酯类(PAEs)监测.结果表明,所选取的几种目标污染物在各监测点均有不同程度的检出.最后,利用商值法对太子河流域的PAHs和PAEs进行生态风险评价.结果表明,荧蒽超过水生生态基准值,其生态风险较大. 相似文献
163.
As one of China’s great metropolises, Taiyuan is affected by heavy chemical industry and manufacture of chemical products, and faces pollution from polychlorinated biphenyls (PCBs). Therefore, this study was conducted to determine the PCB concentrations in various environmental media in Taiyuan. We collected 15 soil samples, 34 respirable particulate matter (PM) samples (17 of PM2.5 and 17 of PM10) from urban areas of Taiyuan, and measured a total of 144 PCB congeners (including some coeluting PCB congeners). The total PCB concentrations were 51–4.7 × 103 pg g−1 in soil, 27–1.4 × 102 pg m−3 in PM2.5 and 16–1.9 × 102 pg m−3 in PM10. Of the PCB homologues, the dominant PCBs detected in the various media were all tri-CBs. Soil was relatively the most polluted media. Furthermore, principal-component analysis revealed that the major PCB source in Taiyuan may be associated with the main commercial PCB through long-range transmission. Toxic equivalency (TEQ) concentrations (based on ten dioxin-like PCBs) ranged from N.D. to 5.9 × 10−3 pg-WHO TEQ g−1 in soil, 2.0 × 10−4–3.4 × 10−3 pg-WHO TEQ m−3 and 1.0 × 10−4–1.2 × 10−3 pg-WHO TEQ m−3 in PM2.5 and PM10, respectively. In previous studies, PCBs were not a severe component of contaminant in Taiyuan; however, this study suggested there is a potential threat of human exposure to PCBs for residents of Taiyuan. 相似文献
164.
Part V—sorption of pharmaceuticals and personal care products 总被引:5,自引:0,他引:5
Background, aim, and scope Pharmaceuticals and personal care products (PPCPs) including antibiotics, endocrine-disrupting chemicals, and veterinary pharmaceuticals
are emerging pollutants, and their environmental risk was not emphasized until a decade ago. These compounds have been reported
to cause adverse impacts on wildlife and human. However, compared to the studies on hydrophobic organic contaminants (HOCs)
whose sorption characteristics is reviewed in Part IV of this review series, information on PPCPs is very limited. Thus, a
summary of recent research progress on PPCP sorption in soils or sediments is necessary to clarify research requirements and
directions.
Main features We reviewed the research progress on PPCP sorption in soils or sediments highlighting PPCP sorption different from that of
HOCs. Special function of humic substances (HSs) on PPCP behavior is summarized according to several features of PPCP–soil
or sediment interaction. In addition, we discussed the behavior of xenobiotic chemicals in a three-phase system (dissolved
organic matter (DOM)–mineral–water). The complexity of three-phase systems was also discussed.
Results Nonideal sorption of PPCPs in soils or sediments is generally reported, and PPCP sorption behavior is relatively a more complicated
process compared to HOC sorption, such as the contribution of inorganic fractions, fast degradation and metabolite sorption,
and species-specific sorption mechanism. Thus, mechanistic studies are urgently needed for a better understanding of their
environmental risk and for pollution control.
Discussion Recent research progress on nonideal sorption has not been incorporated into fate modeling of xenobiotic chemicals. A major
reason is the complexity of the three-phase system. First of all, lack of knowledge in describing DOM fractionation after
adsorption by mineral particles is one of the major restrictions for an accurate prediction of xenobiotic chemical behavior
in the presence of DOM. Secondly, no explicit mathematical relationship between HS chemical–physical properties, and their
sorption characteristics has been proposed. Last but not least, nonlinear interactions could exponentially increase the complexity
and uncertainties of environmental fate models for xenobiotics. Discussion on proper simplification of fate modeling in the
framework of nonlinear interactions is still unavailable.
Conclusions Although the methodologies and concepts for studying HOC environmental fate could be adopted for PPCP study, their differences
should be highly understood. Prediction of PPCP environmental behavior needs to combine contributions from various fractions
of soils or sediments and the sorption of their metabolites and different species.
Recommendations and perspectives More detailed studies on PPCP sorption in separated soil or sediment fractions are needed in order to propose a model predicting
PPCP sorption in soils or sediments based on soil or sediment properties. The information on sorption of PPCP metabolites
and species and the competition between them is still not enough to be incorporated into any predictive models. 相似文献
165.
Andrea L. Clements Yuling Jia Allison Denbleyker Elena McDonald-Buller Matthew P. Fraser David T. Allen Donald R. Collins Edward Michel Jayanth Pudota David Sullivan Yifang Zhu 《Atmospheric environment (Oxford, England : 1994)》2009,43(30):4523-4534
Spatial gradients of vehicular emitted air pollutants were measured in the vicinity of three roadways in the Austin, Texas area: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway with significant truck traffic. A mobile monitoring platform was used to characterize the gradients of CO and NOx concentrations with increased distance from each roadway, while concentrations of carbonyls in the gas-phase and fine particulate matter mass and composition were measured at stationary sites upwind and at one (I-35 and FM-973) or two (SH-71) downwind sites. Regardless of roadway type or wind direction, concentrations of carbon monoxide (CO), nitric oxide (NO), and oxides of nitrogen (NOx) returned to background levels within a few hundred meters of the roadway. Under perpendicular wind conditions, CO, NO and NOx concentrations decreased exponentially with increasing distance perpendicular to the roadways. The decay rate for NO was more than a factor of two greater than for CO, and it comprised a larger fraction of NOx closer to the roadways than further downwind suggesting the potential significance of near roadway chemical processing as well as atmospheric dilution. Concentrations of most carbonyl species decreased with distance downwind of SH-71. However, concentrations of acetaldehyde and acrolein increased farther downwind of SH-71, suggesting chemical generation from the oxidation of primary vehicular emissions. The behavior of particle-bound organic species was complex and further investigation of the size-segregated chemical composition of particulate matter (PM) at increasing downwind distances from roadways is warranted. Fine particulate matter (PM2.5) mass concentrations, polycyclic aromatic hydrocarbons (PAHs), hopanes, and elemental carbon (EC) concentrations generally exhibited concentrations that decreased with distance downwind of SH-71. Concentrations of organic carbon (OC) increased from upwind concentrations immediately downwind of SH-71 and continued to increase further downwind from the roadway. This behavior may have primarily resulted from condensation of semi-volatile organic species emitted from vehicle sources with transport downwind of the roadway. 相似文献
166.
Plaza C Xing B Fernández JM Senesi N Polo A 《Environmental pollution (Barking, Essex : 1987)》2009,157(1):257-263
Binding of two model polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene, by humic acids (HAs) isolated from an organic substrate at different stages of composting and a soil was investigated using a batch fluorescence quenching method and the modified Freundlich model. With respect to soil HA, the organic substrate HA fractions were characterized by larger binding affinities for both phenanthrene and pyrene. Further, isotherm deviation from linearity was larger for soil HA than for organic substrate HAs, indicating a larger heterogeneity of binding sites in the former. The composting process decreased the binding affinity and increased the heterogeneity of binding sites of HAs. The changes undergone by the HA fraction during composting may be expected to contribute to facilitate microbial accessibility to PAHs. The results obtained also suggest that bioremediation of PAH-contaminated soils with matured compost, rather than with fresh organic amendments, may result in faster and more effective cleanup. 相似文献
167.
硅藻土强化混凝去除微污染原水中的有机物 总被引:2,自引:0,他引:2
研究了联用硅藻土与聚合氯化铝(PAC)强化混凝对有机微污染原水中不同性质溶解性有机物的去除效果。采用超滤膜和XAD系列树脂对微污染原水中溶解性有机物进行分级表征,物理分级表明分子量〈4 kD的溶解性有机物占50%以上,化学分级表明原水中以憎水酸(HoA)和亲水物质(HiM)为主。硅藻土助凝去除溶解性有机物,实验结果表明,当PAC投加量30 mg/L,硅藻土投加量0.5 g/L时,溶解性有机碳去除率由22.5%提高到26.3%。 相似文献
168.
Gao J Powers K Wang Y Zhou H Roberts SM Moudgil BM Koopman B Barber DS 《Chemosphere》2012,89(1):96-101
Adsorption of natural organic matter (NOM) on nanoparticles can have dramatic impacts on particle dispersion resulting in altered fate and transport as well as bioavailability and toxicity. In this study, the adsorption of Suwannee River humic acid (SRHA) on silver nanoparticles (nano-Ag) was determined and showed a Langmuir adsorption at pH 7 with an adsorption maximum of 28.6 mg g−1 nano-Ag. It was also revealed that addition of <10 mg L−1 total organic carbon (TOC) increased the total Ag content suspended in the aquatic system, likely due to increased dispersion. Total silver content decreased with concentrations of NOM greater than 10 mg TOC L−1 indicating an increase in nanoparticle agglomeration and settling above this concentration. However, SRHA did not have any significant effect on the equilibrium concentration of ionic Ag dissolved in solution. Exposure of Daphnia to nano-Ag particles (50 μg L−1 and pH 7) produced a linear decrease in toxicity with increasing NOM. These results clearly indicate the importance of water chemistry on the fate and toxicity of nanoparticulates. 相似文献
169.
采用混凝剂聚合氯化铝(PAC)、聚丙烯酰胺(PAM)、聚合硫酸铁(PFS)对陶瓷印花废水进行混凝沉降处理,监测水样的吸光度、浊度、悬浮物,以脱色率、浊度去除率、悬浮物去除率评价混凝处理的效果。结果表明:PAC是陶瓷印花废水沉降处理的理想混凝剂;水样的吸光度、浊度、悬浮物随混凝剂用量增大和沉降时间延长而呈降低趋势,而脱色率、浊度去除率、悬浮物去除率随混凝剂和沉降时间的增大呈增大的趋势;PAC投加量为20mg/L,沉降时间约为24h,水样脱色率达到90.0%,而当PAC投加量达到100mg/L,沉降时间约为4h,陶瓷印花水的脱色率可达到96.0%。证明了药剂用量的增加与沉降时间的延长对混凝过程具有增效作用。 相似文献
170.
Size segregated suspended particulate matter (PM2.5 and PM10-2.5) in air at four major petroleum-filling stations in Ile-Ife, Nigeria, were monitored using double staged “Gent” stacked samplers to assess variations in mass loads and elemental concentrations of 25 elements. Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, Cs, Ta, W, and Pb were determined in both fractions by external ion beam proton-induced X-ray emission technique. Enrichment factors and pollution indices were calculated and results revealed that most elements were anthropogenic in both fractions with concentrations exceeding the World Health Organization guideline standards. 相似文献