首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1249篇
  免费   202篇
  国内免费   90篇
安全科学   1000篇
废物处理   23篇
环保管理   27篇
综合类   350篇
基础理论   33篇
污染及防治   36篇
评价与监测   13篇
社会与环境   17篇
灾害及防治   42篇
  2024年   1篇
  2023年   41篇
  2022年   40篇
  2021年   97篇
  2020年   100篇
  2019年   69篇
  2018年   30篇
  2017年   67篇
  2016年   74篇
  2015年   90篇
  2014年   70篇
  2013年   60篇
  2012年   90篇
  2011年   102篇
  2010年   73篇
  2009年   64篇
  2008年   38篇
  2007年   88篇
  2006年   68篇
  2005年   48篇
  2004年   35篇
  2003年   31篇
  2002年   29篇
  2001年   39篇
  2000年   17篇
  1999年   9篇
  1998年   13篇
  1997年   5篇
  1996年   11篇
  1995年   7篇
  1994年   5篇
  1993年   7篇
  1992年   3篇
  1991年   2篇
  1990年   6篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有1541条查询结果,搜索用时 15 毫秒
61.
为解决传统经验公式在预测气体泄爆中最大超压出现时的较大偏差或过于保守的问题,提出使用人工神经网络预测气体泄爆最大超压。基于124组实验数据,采用BP与RBF神经网络,通过优化算法计算与迭代循环对泄爆样本中的影响因素进行降维与选择,并确定2类神经网络本身在学习与计算气体泄爆样本时的相关参数。结果表明:PCA(主成分分析法)在当前样本条件下的降维效果较差,而通过迭代对比确认气体泄爆样本中的5类特征全部保留时神经网络的训练模拟效果最好;通过对124组实验数据进行随机挑选训练集与测试集的训练模拟结果发现,神经网络对气体泄爆中最大超压的预测效果较好;通过对比Molkov提出的和经Fakandu等改进的NFPA 68经验公式以及2类神经网络的预测结果表明,神经网络相比于传统气体泄爆经验公式具有明显优势。  相似文献   
62.
为探究采空区遗煤、松散破碎岩块对瓦斯爆炸的影响,建立缝洞型管道模型,采用数值模拟与理论分析结合方法研究采空区内缝洞型管道内瓦斯爆炸的传播规律及管道长径比对瓦斯爆炸过程中速度与冲击波的影响。研究结果表明:在缝洞型结构内,随着火焰沿管道向前传播,各监测点速度逐渐变大、压力先增加后降低,而压力上升速率则表现出不规则的变化;缝洞结构加剧了火焰燃烧的剧烈程度,提高了管道内各监测点的温度峰值;在缝洞型管道内随长径比r增加,各监测点最大压力峰值以及速度大小依次降低。  相似文献   
63.
为了研究不同密度的可燃爆粉尘在内置多孔环形喷嘴的20 L爆炸特性测试装置中的分散特征,基于负载粒子流方法、耦合DPM动量平衡方程和时间平均 Navier Stokes控制方程组,实现3种不同密度的煤粉、铝粉和锆粉在20 L爆炸测试装置中粉尘分散全过程的数值模拟。研究结果表明:多孔环形喷嘴的分散较为均匀,但是约束管道末端存在局部粉尘残留区,致使爆炸仓内真实粉尘浓度远低于形式浓度;爆炸仓中心位置的最大湍动能随着粉尘密度的增加而减小,只有显著地变化粉尘密度才能展示区分度较高的浓度峰值和抵达浓度峰值的时间。  相似文献   
64.
为研究抛光铝粉的爆炸危险和ABC粉体的抑爆特性,在对实验粉体粒径分布进行分析的基础上,采用20 L粉尘爆炸特性实验装置,分别对不同铝粉尘浓度、不同抑爆剂浓度条件下的爆炸特性参数进行测试。研究结果表明:在实验条件下,铝粉的爆炸下限为45 g/m3<C<60 g/m3;随铝粉浓度增加,爆炸烈度呈现出先增强后减弱的变化趋势,在浓度为400 g/m3时爆炸烈度最大。ABC抑爆剂能够有效抑制铝粉爆炸超压和爆炸反应进程,随着惰性粉体浓度的增加,抑制效果愈加明显,爆炸逐渐减弱。当ABC惰性粉体的质量占比增加到50%时,相较单一铝粉爆炸,反应过程时间由72 ms增加至785 ms,爆炸最大压力、最大压力上升速率分别下降了61.7%,89.5%;当ABC粉体质量占比为53%时,铝粉被完全惰化,未发生爆炸。  相似文献   
65.
Thermal runaway hazard assessment provides the basis for comparing the hazard levels of different chemical processes. To make an overall evaluation, hazard of materials and reactions should be considered. However, most existing methods didn't take the both into account simultaneously, which may lead the assessment to a deviation from the actual hazard. Therefore, an integrated approach called Inherent Thermal-runaway Hazard Index (ITHI) was developed in this paper. Similar to Dow Fire and Explosion Index(F&EI) function, thermal runaway hazard of chemical process in ITHI was the product of material factor (MF) and risk index (RI) of reaction. MF was an indicator of material thermal hazards, which can be determined by initial reaction temperature and maximum power density. RI, which was the product of probability and severity, indicated the risk of thermal runaway during the reaction stage. Time to maximum rate under adiabatic conditions and criticality classes of scenario were used to indicate the runaway probability of the chemical process. Adiabatic temperature rise and heat of the desired reaction and secondary reaction were used to determine the severity of runaway reaction. Finally, predefined hazard classification criteria was used to classify and interpret the results obtained by this method. Moreover, the method was validated by case studies.  相似文献   
66.
The effect of pyrolysis and oxidation characteristics on the explosion sensitivity and severity parameters, including the minimum ignition energy MIE, minimum ignition temperature MIT, minimum explosion concentration MEC, maximum explosion pressure Pmax, maximum rate of pressure rise (dP/dt)max and deflagration index Kst, of lauric acid and stearic acid dust clouds was experimentally investigated. A synchronous thermal analyser was used to test the particle thermal characteristics. The functional test apparatuses including the 1.2 L Hartmann-tube apparatus, modified Godbert-Greenwald furnace, and 20 L explosion apparatus were used to test the explosion parameters. The results indicated that the rapid and slow weight loss processes of lauric acid dust followed a one-dimensional diffusion model (D1 model) and a 1.5 order chemical reaction model (F1.5 model), respectively. In addition, the rapid and slow weight loss processes of stearic acid followed a 1.5 order chemical reaction model (F1.5 model) and a three-dimensional diffusion model (D3 model), respectively, and the corresponding average apparent activation energy E and pre-exponential factor A were larger than those of lauric acid. The stearic acid dust explosion had higher values of MIE and MIT, which were mainly dependent on the higher pyrolysis and oxidation temperatures and the larger apparent activation energy E determining the slower rate of chemical bond breakage during pyrolysis and oxidation. In contrast, the lauric acid dust explosion had a higher MEC related to a smaller pre-exponential factor A with a lower amount of released reaction heat and a lower heat release rate during pyrolysis and oxidation. Additionally, due to the competition regime of the higher oxidation reaction heat release and greater consumption of oxygen during explosion, the explosion pressure Pm of the stearic acid dust was larger in low concentration ranges and decayed to an even smaller pressure than with lauric acid when the concentration exceeded 500 g/m3. The rate of explosion pressure rise (dP/dt)m of the stearic acid dust was always larger in the experimental concentration range. The stearic acid dust explosion possessed a higher Pmax, (dP/dt)max and Kst mainly because of a larger pre-exponential factor A related to more active sites participating in the pyrolysis and oxidation reaction. Consequently, the active chemical reaction occurred more violently, and the temperature and overpressure rose faster, indicating a higher explosion hazard class for stearic acid dust.  相似文献   
67.
This paper mainly studied the influence of particle size distribution on the explosion risk of aluminum powder under the span of large particle size distribution. The measurement was carried out with the 20 L explosion ball and the Hartmann tube. The statistical analysis was used to analyze the relevance between the parameters of explosion risk and the particle size parameters. Test results showed that with the increase of particle size, the sensitivity parameter increases and the intensity parameter deceleration decreases. The effect of particle size change on MEC and MIE of small particle size aluminum powder is relatively small but greater impact on Pm and (dP/dt)m. The small particle size components greatly increasing the sensitivity of the explosion and accelerating the rate of the explosion reaction; while the large particle size component contributes to the maximum explosion pressure. D3,2 particle size dust determines the risk of aluminum powder explosion.  相似文献   
68.
Reducing accident occurrence in petrochemical plants is crucial, thus appropriately allocating management resources to safety investment is a vital issue for corporate management as international competition intensifies. Understanding the priority of safety investment in a rational way helps achieve this objective.In this study, we targeted an acrylonitrile plant. First, Dow Chemical's Fire and Explosion Index (F&EI) identified the reaction process as having the greatest physical risk. We evaluated the severity of accidents in the reaction process using the Process Safety Metrics advocated by the Center for Chemical Process Safety (CCPS); however, this index does not express damages a company actually experience. To solve this problem, we proposed a new metric that adds indirect cost to CCPS metrics. We adopted fault tree analysis (FTA) as a risk assessment method. In identifying top events and basic events, we attempted to improve the completeness of risk identification by considering accidents from the past, actual plant operation and equipment characteristics, natural disasters, and cyber-attacks and terrorist attacks. Consequently, we identified the top events with high priority in handling because of serious accidents as fire/explosion outside the reactor, fire/explosion inside the reactor, and reactor destruction. The new CCPS evaluation index proposed in this study found that fire and explosion outside the reactor has the highest severity. We considered the creation of the fault tree (FT) diagram of the top event, estimating the occurrence probability, and identifying the risk reduction part and capital investment aimed at risk reduction. As an economically feasible selection method for risk reduction investment, using the difference in loss amounts before and after safety investments indicated investment priority.  相似文献   
69.
There is a noticeable discrepancy in the ability to control reduced explosion overpressure between flat bursting panels and curved bursting panels with the same static activation overpressure. Flat bursting plates were observed to leak at approximately 80% of the static activation overpressure lower than curved bursting plates. A new experimental technique is proposed in our paper. Three different vent areas of flat and curved bursting panels were tested, there was significant difference in structural stiffness between flat bursting panels and curved bursting panels, which is the reason the discrepancy in the ability to control reduced explosion overpressure. The structural stiffness of the flat bursting panels is poorer than that of the other, and a greater deformation of the flat bursting panels occurs under the same load. The membrane stress caused by the explosion overpressure therefore produces a larger value in the flat bursting panels which causes it to open prematurely. Moreover, the smaller the vent area that is, the more significant discrepancy in controlling the reduced explosion overpressure between both bursting panels is. This experimental and theoretical result in our paper provides some useful experience for the method of explosion venting.  相似文献   
70.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号