首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2449篇
  免费   297篇
  国内免费   795篇
安全科学   254篇
废物处理   59篇
环保管理   245篇
综合类   2269篇
基础理论   207篇
污染及防治   189篇
评价与监测   191篇
社会与环境   71篇
灾害及防治   56篇
  2024年   81篇
  2023年   184篇
  2022年   240篇
  2021年   246篇
  2020年   215篇
  2019年   189篇
  2018年   103篇
  2017年   105篇
  2016年   127篇
  2015年   144篇
  2014年   228篇
  2013年   139篇
  2012年   166篇
  2011年   158篇
  2010年   128篇
  2009年   132篇
  2008年   123篇
  2007年   116篇
  2006年   103篇
  2005年   116篇
  2004年   63篇
  2003年   73篇
  2002年   68篇
  2001年   53篇
  2000年   36篇
  1999年   33篇
  1998年   18篇
  1997年   32篇
  1996年   26篇
  1995年   20篇
  1994年   17篇
  1993年   8篇
  1992年   9篇
  1991年   5篇
  1990年   11篇
  1989年   20篇
  1988年   1篇
  1987年   5篇
排序方式: 共有3541条查询结果,搜索用时 78 毫秒
971.
冯婷  王锋文  卢培利  刘莉 《中国环境科学》2021,41(12):5578-5590
于2015年10月~2016年8月在重庆大学A区采集秋冬春夏4个季节PM2.5样品(n=77),分析生物标志物(n-alkanes、UCM、藿烷和甾烷)组分特征,探讨季节变化和对来源的指示.结果表明,重庆沙坪坝区PM2.5中Σn-alkanes (C11~C38)和UCM年均浓度分别为328.69ng/m3和2.52μg/m3,均为冬季最高,夏季最低.28n-alkanes PMF源解析识别出4个因子:化石燃料燃烧(23.45%)、化石燃料残留(29.1%)、生物质燃烧(21.35%)和高等植物蜡排放(26.1%).UCM与可分离烷烃组分比例(UR)为1.29~3.33.夏季UR最低,可能是受温度和光照的驱使,微生物和植物的生命活动旺盛所致.藿烷Ts/Tm、C30αβ/C31αβ(22R)和C31αβ(22S)/(22S+22R)的年均值分别为1.15,5.26和0.59,指示以机动车尾气排放为主的高成熟度石油烃输入.甾烷C29αββ/(ααα+αββ)和C29ααα(20S)/(20S+20R)的年均值分别为0.40和0.53,主要指示高成熟度化石燃料残余物输入.PSCF分析表明,Σn-alkanes的潜在源区主要集中在四川东南部和重庆西部及其相接壤附近区域,UCM的潜在源区主要分布在四川东南部.  相似文献   
972.
在综合分析农业面源污染风险源汇因子的基础上,筛选出影响海河流域农业面源污染的8个主要因子(年降水量、溶解态面源污染物入河系数、吸附态面源污染物入河系数、年植被覆盖度、坡度、土壤可侵蚀性因子、农田氮表观平衡量和农田磷表观平衡量),建立了农业面源污染潜在风险识别指标体系,采用多因子综合分析法对海河流域农业面源污染潜在风险等级进行评价,并与DPeRS模型风险识别结果进行偏差分析.结果表明,海河流域有61.91%的区域存在农业面源污染潜在风险,集中分布在流域的中部和南部地区,高风险区主要分布在北京市东南部、天津市中部、流域山东段东北部和河南段南部等区域;与DPeRS模型识别结果对比验证,显示同一风险等级面积相差不超过12%,且高风险级别面积相差仅为0.12%,97.17%以上的区域均为偏差小或无偏差,表明该识别方法具有与DPeRS模型法同等水平的农业面源污染潜在风险识别精准度,可实现区域农业面源污染潜在风险的快速、高效识别.  相似文献   
973.
利用Meteoinfo软件中的Trajstat插件对2019-03—2020-02期间抵达嘉峪关市的气团进行后向轨迹模拟,并结合各类大气污染物数据,对嘉峪关市四季的后向轨迹进行聚类分析,研究抵达嘉峪关市的主要气团输送路径及对应路径的污染物浓度特征。通过潜在源贡献因子法(PSCF)及权重浓度轨迹分析法(CWT)来分析PM10与O3的输送来源及主要潜在源区。结果表明:输送至嘉峪关市的气团中,西北方向气团轨迹数目和污染轨迹数目占比均大于其余方向,嘉峪关市四季的大气污染更易受到西北方向气团的影响。嘉峪关市春季PM10污染相对严重,更易受到新疆东部地区潜在源区的影响,其余三季PM10污染相对较轻,潜在源区主要集中在新疆东部地区,少数位于嘉峪关市东北方向。嘉峪关市春、夏季的O3污染相对严重,强潜在源区主要集中在新疆东部地区及甘肃河西走廊地区,秋、冬季O3污染相对较轻,其中秋季潜在源区主要位于甘肃河西走廊地区,冬季潜在源区主要位于新疆东部地区。  相似文献   
974.
汾渭平原受其复杂地形特征及产业结构影响,和京津冀、长三角地区一起被列为大气污染重点防治区域.本研究应用2014—2019年冬季中国环境监测总站汾渭平原各城市的六大空气污染物逐小时数据,结合欧洲中心ERA-5数据,利用HYSPLIT后向轨迹模型及T-model斜交旋转主成分分析法(PCT),揭示过去6年汾渭平原冬季颗粒物浓度演变规律,厘清汾渭平原复杂地形影响下大气污染来源特征、潜在源区及成因,识别影响汾渭平原冬季空气污染的主要天气系统类型.HYSPLIT模拟结果表明,冬季喇叭口地形城市主要受本地和邻近区域污染源影响;山区盆地地形城市更易受到100~300 km距离以内污染源的传输影响,其中,来自陕北的气团对其影响最大;峡谷地形城市更易受到300~600 km范围内污染源的传输影响;平原地形城市的污染物浓度受区域传输的影响较大.影响汾渭平原冬季颗粒物重污染的天气系统可分为高压前部型、高压后部型、均压场型及低压倒槽型,其中,高压前部型是汾渭平原冬季重污染时段最易出现的天气形势.  相似文献   
975.
党的十八大以来,党中央始终坚持把解决好“三农”问题作为全党工作的重中之重。习近平总书记强调,民族要复兴,乡村必振兴。农村生态环境直接影响城乡居民的米袋子、菜篮子、水缸子。农业面源污染治理作为改善农业农村生态环境的重要内容,事关广大人民群众的切身利益,事关国家粮食安全和农业绿色发展,事关乡村振兴。  相似文献   
976.
为厘清包括二次有机气溶胶(SOA)在内的深圳市区PM2.5各种一次和二次来源贡献,本文于2017年9月2日~2018年8月29日在深圳市大学城点位开展PM2.5样品采集,并进行化学组分和水溶性有机物(WSOM)质谱测量,共获得162组有效数据.观测期间深圳市大气PM2.5平均质量浓度为26μg/m3,在传统PMF源解析的基础上加入羧基离子碎片(CO2+)作为SOA的示踪物,加入水溶性有机氧(WSOO)用于计算各因子O/C,验证有机物解析效果.结果表明,SOA可以被独立解析出,其O/C明显高于其他一次污染源中有机物;机动车、二次硫酸盐、二次硝酸盐、SOA为最主要的4个源,对PM2.5质量浓度的贡献分别为25%、23%、17%和10%,船舶、地面扬尘、老化海盐、建筑尘、生物质燃烧、燃煤和工业贡献均在5%以内.各个源的变化特征表明,机动车、二次硫酸盐、二次硝酸盐、SOA等源贡献呈现冬高夏低的季节特征,与冬季季风条件下源自内陆的污染传输密切相关.污染天气时,二次硝酸盐和SOA的贡献增加相对最显著,因此NOx和挥发性有机物是减排的关键.  相似文献   
977.
运用潜在源贡献分析(PSCF)方法,识别了2018年秋冬季京津冀地区典型城市北京,唐山和石家庄PM2.5的潜在污染源区;基于气象-空气质量模式(WRF-CAMx)和传输通量计算方法定量评估了与其周边省市之间PM2.5的传输贡献,识别了三个典型城市PM2.5的传输路径,揭示了PM2.5传输净通量的垂直分布特征.结果表明,三个城市秋冬季PSCF高值主要集中在河北南部,河南东北部和山西中东部地区;秋冬季PM2.5均以本地贡献影响为主(51.78%~68.40%),外来贡献为辅(31.60%~48.22%),不同季节贡献率有所波动.整个观测期间,近地面主要表现为毗邻城市向北京和石家庄输送PM2.5,而唐山主要表现为向外输送PM2.5,净通量最大值出现在海拔0~50m,其净通量为-99.47t/d.同时鉴别出了一条主要的传输路径,即西南-东北方向.  相似文献   
978.
以福建省九龙江流域-厦门湾为例,构建了水环境治理绩效评估框架进行综合评估.结果显示,2011~2018年九龙江流域-厦门湾的水环境治理经历3个阶段,治理水平逐步上升,但存在陆源氮磷输入控制有待进一步加强、自然海岸生态修复亟需统筹等问题.结合InVEST模型、克里金插值等方法,借助污染物“源-汇”空间分析手段识别治理优先区,发现厦门岛排污口为氮磷输出主要点污染源、流域东南区域为主要面污染源,而厦门湾西海域是承接污染物的主汇区.进而提出源汇空间绩效科学评估、陆海统筹社会-生态系统监测与管理、适应自然的生态工程解决方案等现代化治理对策.  相似文献   
979.
浦静姣  徐宏辉  姚波  张超  单萌 《中国环境科学》2022,42(10):4494-4500
采用位于长三角地区的临安区域大气本底站罐采样获得的全氟温室气体(PFCs、SF6、NF3、SO2F2)浓度,分析2011~2020年该地区大气中全氟温室气体的浓度分布特征和变化趋势.结果显示,临安站绝大部分全氟温室气体的浓度均呈现逐年升高的变化趋势,至2020年长三角地区全氟温室气体本底浓度分别达到(86.30±0.52)×10-12(CF4)、(5.03±0.00)×10-12(C2F6)、(0.70±0.01)×10-12(C3F8)、(1.82±0.00)×10-12(c-C4F8)、(10.44±0.01)×10-12(SF6)、(2.36±0.04)×10-12(NF3)、(2.61±0.05)×10-12(SO2F2).长三角地区大部分全氟温室气体的本底浓度与全球本底值接近.通过对临安站全氟温室气体污染浓度的潜在源贡献作用(PSCF)和浓度权重轨迹(CWT)分析显示,临安站全氟化碳PFCs (CF4、C4F10、C2F6、C3F8、c-C4F8)的潜在源区主要包括山东、江苏、安徽、上海、浙江中北部和江西东北部地区,NF3、SF6、SO2F2的潜在源区则集中在江苏中南部、上海、浙北地区.  相似文献   
980.
利用西风盛行时在青岛采集的总悬浮颗粒物(TSP)样品,分析其中总P (TP)和溶解态P (DP)浓度与气团后向轨迹的关系,采用正定矩阵因子分析(PMF)和潜在源贡献因子分析(PSCF)方法解析TP和DP的来源及其潜在贡献区域.结果表明:青岛气溶胶中TP主要来自地壳源的贡献(45%);其次是机动车排放源(22%)、燃烧源(21%)和工业源(12%);海盐源的贡献最小(<1%).但DP主要来自人为源的贡献,其中机动车排放源的贡献为35%,燃烧源和/或二次源为28%、工业源为25%;地壳源和海盐源等自然源的贡献分别为9%和1%.相同来源的TP和DP其潜在贡献区域相似,但DP的贡献区域范围更广.地壳源P (TP和DP)的贡献区域集中在沙尘从源地向我国近海传输的路径上,海盐源P的贡献区域位于黄、渤海,工业源P的贡献区域主要为河南、山东以及蒙古国南部等地区,燃烧源/二次源P的主要贡献区域为山东南部和江苏北部区域,机动车排放源P的贡献区域则主要为北京、天津、山东、江苏等区域.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号