全文获取类型
收费全文 | 1295篇 |
免费 | 195篇 |
国内免费 | 696篇 |
专业分类
安全科学 | 52篇 |
废物处理 | 8篇 |
环保管理 | 104篇 |
综合类 | 1555篇 |
基础理论 | 204篇 |
污染及防治 | 77篇 |
评价与监测 | 148篇 |
社会与环境 | 23篇 |
灾害及防治 | 15篇 |
出版年
2024年 | 64篇 |
2023年 | 163篇 |
2022年 | 186篇 |
2021年 | 196篇 |
2020年 | 175篇 |
2019年 | 122篇 |
2018年 | 104篇 |
2017年 | 87篇 |
2016年 | 102篇 |
2015年 | 116篇 |
2014年 | 138篇 |
2013年 | 84篇 |
2012年 | 104篇 |
2011年 | 80篇 |
2010年 | 77篇 |
2009年 | 55篇 |
2008年 | 73篇 |
2007年 | 67篇 |
2006年 | 37篇 |
2005年 | 34篇 |
2004年 | 23篇 |
2003年 | 21篇 |
2002年 | 14篇 |
2001年 | 11篇 |
2000年 | 6篇 |
1999年 | 3篇 |
1998年 | 10篇 |
1997年 | 6篇 |
1996年 | 7篇 |
1995年 | 6篇 |
1994年 | 6篇 |
1993年 | 3篇 |
1991年 | 3篇 |
1990年 | 2篇 |
1988年 | 1篇 |
排序方式: 共有2186条查询结果,搜索用时 15 毫秒
21.
通过对南黄海中部49个表层沉积物样品进行总有机碳,粒度,多环芳烃和甲基菲等GS-MS定量分析,探讨了研究区沉积物中多环芳烃分布特征,分子组成,评估南黄海中部多环芳烃污染水平并识别其来源.研究表明,南黄海中部14种多环芳烃总量(ΣPAHs)在81.63~6567.31 ng/g之间,其中优控多环芳烃(ΣEPA PAHs)11种,含量为29.2~1029.1 ng/g,平均含量255.1 ng/g,与国内外其他地区相比有机污染水平为中-低;苝为研究区内主要多环芳烃,分布较为广泛,其含量占所有PAHs的6.40%~88.85%,低含量苝与人为活动有关,而高含量苝代表了陆源有机质输入;多环芳烃组成,异构体分析和甲基菲特征表明,研究区优控多环芳烃主要为煤和高等植物燃烧或不完全燃烧产物以气溶胶形式输入,但部分样品表现出明显的石油源特性也证实了石油燃料,原油泄露产生的多环芳烃客观存在. 相似文献
22.
三峡水库主要入库河流氮营养盐特征及其来源分析 总被引:18,自引:29,他引:18
以2004~2005年的三峡水库3条主要入库河流(长江、嘉陵江、乌江)中的水文、水质的调查数据为依据,研究了三峡水库入库河流中主要的水文变化特征、氮营养盐的季节性分布规律及其形态组成.结果表明,3条入库河流的流量、流速呈现季节性变化,三峡水库入库河流的主要水文特征值已处于水华暴发的危险范围内,很容易发生水华.3条入库河流中总氮含量年均值都在1.55~2.15 mg/L之间,总体偏高,乌江武隆断面的总氮浓度最高,嘉陵江北碚断面次之,长江朱沱断面最低,并且3条河流丰水期水体中总氮含量均高于枯水期,说明非点源对氮污染影响较大;溶解态无机氮(DIN)是总氮的主要存在形式,而其中又以硝酸盐氮(NO3--N)为主,平均占到DIN的70%以上.氮素污染多以还原态氨氮(NH4 -N)的形式排入水体,经过硝化作用,NH4 -N氧化成亚硝酸盐氮(NO2--N),然后再氧化成稳定的NO3--N,并且消耗掉水体中大量的氧.入库河流水体中的NO3--N主要来自农田径流、城市污水、城市径流以及淹没土壤的释放,NH4 -N的来源主要是城市污水、工业废水以及少量的生活垃圾和船舶废水. 相似文献
23.
我国区域复合污染日趋严重,二次有机气溶胶(SOA)是细颗粒物PM2.5的重要组成之一.本研究总结了当前国内外定量估算SOA的主要方法,包括EC示踪法、WSOC法、受体模型法、示踪物产率法、数值模拟法等.通过对各种方法的原理介绍与比较,指出1)EC示踪法、WSOC法、受体模型法简单易行,与在线连续观测数据结合可估算高时间分辨率的SOA浓度,但受限于对当地源谱和特定物种的了解;2)示踪物产率法虽分析技术难度高,但可针对不同来源的SOA估算;3)数值模拟可获得大尺度SOA的空间分布.针对国内外的最新研究成果进行简单概述,不同方法的研究表明中国二次有机气溶胶是总有机气溶胶的重要部分,人为源VOCs对二次有机气溶胶发挥着重要贡献.本文旨在为未来我国二次有机气溶胶的研究提供基础信息和研究思路. 相似文献
24.
闽江福州段沉积物中多环芳烃的分布、来源及其生态风险 总被引:2,自引:1,他引:2
对闽江福州段37个沉积物样品中的15种多环芳烃(PAHs)进行了研究.结果表明,15种PAHs的总量在241.5~1310.8ng·g-1之间,均值为630.9ng·g-1,且从上游到下游整体上呈下降的趋势,但在福州市区附近有突增的现象.沉积物中有机质含量(SOM)与PAHs总量呈显著正相关(r=0.58,p<0.01).同时,应用因子分析和多元线性回归方法对PAHs进行了源解析.结果表明,煤燃烧来源占31.7%,汽油燃烧占25.2%,柴油燃烧占28.7%,石油泄漏源占14.5%,石油燃烧是闽江福州段沉积物中PAHs的主要来源.用效应区间中值ERM(the effects range median)和效应区间低值ERL(the effects range low)及其商值平均方法对闽江福州段沉积物中PAHs的生态风险进行了评价.结果表明,有4个样品芴的含量超过ERL指导值(19ng·g-1),具有一定的生态风险,其余PAH单体和PAHs总量都不超标. 相似文献
25.
使用GCIECD(气相色谱/电子捕获检测器)及毛细色谱柱定量分析粤港地区气溶胶和餐厅烟尘中有机氯农药的组成和分布特征,并分析其主要来源研究表明,从研究区大气环境中的气溶胶样品及餐厅烟尘颗粒物中,检出12种有机氯农药.其中6种DDT(滴滴涕)及其代谢物,3种BHC(六六六)和其它3种含氯农药,浓度范围在0.20~60.78pg/m3.靠近农田和果园的气溶胶及餐厅烟尘颗粒物中4,4'-DDT和2,4'-DDT浓度较高,说明大气环境中的DDT不仅来源于农药施撒过程和农田表层土壤,而且还来源于动物脂肪高温裂解的释放。 相似文献
26.
2006~2007年在天津近岸海域分4个季节走航采集了不同粒径大气颗粒物样品,分析了其质量浓度以及元素、离子和碳等化学组成,并应用富集因子以及特征化合物比值对其来源进行了探讨.结果表明,天津近岸海域TSP,PM10和PM2.5的质量浓度分别为(294.98±3.95),(279.87±17.53),(205.50±38.13)μg/m3,且呈现出明显的季节变化,秋季颗粒物浓度最高,冬季次之,夏季最低. TSP、PM10和PM2.5中总元素浓度分别为48.76, 47.94,32.08 μg/m3. TSP中含量最高的离子是Na+, PM10和PM2.5中含量最高的离子是Cl-. 3种不同粒径中OC浓度秋、冬两季均明显高于春夏两季. Al/Fe的比值分析结果表明,春季TSP的主要来源为土壤尘,秋、冬季PM10和PM2.5主要受燃煤的影响. Cu、Zn和Pb的富集系数较高,其中Pb在冬季PM10中富集达到最高为741.3. NO3-/SO42-的变化范围为0.28~0.85,春夏季该比值较高于秋冬季,反映了该海域同时受燃煤与机动车污染的影响.OC/EC变化范围为2.13~5.58,表明该海域气溶胶中存在着大量二次有机碳. 相似文献
27.
长江河口表层沉积物中PAHs的生态风险评价 总被引:8,自引:4,他引:4
2005年11月26—29日对长江河口部分表层沉积物中多环芳烃类化合物(PAHs)的污染现状进行了调查和研究,分析了其中16种PAHs单体含量. 结果表明,长江河口表层沉积物中属于美国优先控制的16种PAHs共检出15种,仅萘未被检出,w(PAHs)为355.72~2 480.85 ng/g,平均值为1 040.29 ng/g. 表层沉积物中以4环和5~6环PAHs为主,二者之和占w(PAHs)的80%以上. 长江河口表层沉积物中PAHs污染主要来源于矿物燃料的高温燃烧,但部分区域也不排除石油源输入的可能性. 与沉积物风险评估值相比,严重的生态风险在长江河口表层沉积物中不存在,然而排污口附近沉积物存在一定的生态风险. 相似文献
28.
29.
为了解贵州安顺地区大气降水中低分子有机酸的化学组成特征, 2007年6~10月共采集降水40次,对降水样品进行了pH值、电导率、水溶性无机阴离子和低分子有机酸的测定.结果表明,安顺地区的大气降水的pH值在3.57~7.09之间,平均值为4.57.最主要的有机酸组成为乙酸、甲酸和草酸,它们的雨量平均浓度依次为6.75、 4.61和2.05 μmol·L-1.有机酸在6月和7月的浓度明显高于其他月份,表明有机酸可能来源于植物生长释放或者其前驱物的光化学氧化.有机酸对降水自由酸的贡献率平均为32.2%,明显高于贵阳市.同时,甲酸与乙酸和草酸存在显著相关关系(p=0.01),相关系数分别为0.663和0.503,表明甲酸与乙酸具有相似的来源或者不同来源的相似源强,而草酸的前驱物可能与甲酸具有相似的排放特征.观测期间,安顺地区有机酸的湿沉降通量为2.10 mmol/m2,主要集中在降雨频率和雨量相对较高的夏季,此时有机酸的浓度和有机酸对大气降水自由酸的贡献都较大,因此控制安顺地区夏季有机酸的排放对于此地区的酸雨防治工作显得尤为重要. 相似文献
30.
利用苏码罐采样-气相色谱/质谱联用仪(GC/MS)监测石家庄市2019年、 2021年和2022年春季挥发性有机物(VOCs),并收集同期臭氧(O3)和PM2.5在线监测数据,分析了挥发性有机物(VOCs)浓度水平特征和时序变化,并利用臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAFP)评估了VOCs的化学活性,通过潜在源贡献因子法(PSCF)和浓度权重轨迹分析(CWT)识别石家庄市春季VOCs潜在源区,通过特征比值法对VOCs进行来源解析.结果表明:①2019年、 2021年和2022年石家庄市春季(即观测期)污染期ρ(VOCs)均值为191.17 μg·m-3,清洁期ρ(VOCs)均值为122.18 μg·m-3. ②OFP在污染期为361.23 μg·m-3,在清洁期为266.96 μg·m-3;SOAFP在污染期为1.98 μg·m-3,在清洁期为1.61 μg·m-3,控制好苯系物,尤其是苯、甲苯、乙苯和二甲苯是减少PM2.5和O3污染的关键. ③观测期VOCs潜在源区主要分布在裕华区东部、高新区和栾城区北部,权重CWT分布与主要权重PSCF分布相统一,除本地排放外还受到临近区域传输的影响. ④由B/T/E及X/B的值,石家庄市春季VOCs的主要来源为移动源和燃烧源,且气团老化较严重,控制机动车排放、开展区域联防联控是改善石家庄市空气质量的有效手段. 相似文献