首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   35篇
  国内免费   78篇
安全科学   31篇
废物处理   45篇
环保管理   21篇
综合类   228篇
基础理论   32篇
污染及防治   40篇
评价与监测   21篇
灾害及防治   2篇
  2024年   1篇
  2023年   10篇
  2022年   6篇
  2021年   12篇
  2020年   10篇
  2019年   8篇
  2018年   5篇
  2017年   8篇
  2016年   2篇
  2015年   20篇
  2014年   27篇
  2013年   14篇
  2012年   19篇
  2011年   16篇
  2010年   19篇
  2009年   19篇
  2008年   26篇
  2007年   29篇
  2006年   24篇
  2005年   27篇
  2004年   19篇
  2003年   18篇
  2002年   4篇
  2001年   14篇
  2000年   12篇
  1999年   10篇
  1998年   9篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1989年   2篇
  1986年   1篇
排序方式: 共有420条查询结果,搜索用时 15 毫秒
381.
考察N910、Lix84-I、N902和RE609 4种不同类型的萃取剂从高浓度铜氨溶液中萃取铜的效率,选取萃取效果较好的N910作为重点研究对象,并研究其从铜氨溶液萃取铜的萃取性能。实验发现,N910具有萃取速率快、饱和容量高、分离效果好、反萃完全及不易萃氨等特点;并用80%N910+煤油溶液,在pH=9.5,温度25℃,相比(O/A)1∶1条件,进行真实料液萃取实验,振荡10 min,萃取中铜离子的浓度达到69.66 g/L。因此,N910能够作为一种高效的铜萃取剂,从碱性蚀刻废液中回收铜。  相似文献   
382.
该方法主要是由测定电池的电动势而得。在国家标准中,使用的是下列电池:参比电极|KCl浓溶液‖溶液X|H2|Pt。而在实际中,受环境条件的影响,通常以玻璃电极为指示电极。通过能思特方程可知:  相似文献   
383.
介绍氟离子对锆(IV),水杨基荧光酮(SAF)-溴化十六烷基,三甲基铵(CTMAB)-三元碲合物间相互竞争而形成的抑制作用,建立了氟离子分光光度快速测定法.试验结果表明,其方法反应快,重现性好,可在不分离水样溶液的情况下,直接测定氟离子浓度,测定范围可达0~0.48ug/mL.  相似文献   
384.
文章分析了聚合物溶液性质、配制水源水质和机械剪切对聚合物溶液黏度的影响。分别用辽河油田欢三联软化清水和软化污水配制聚合物母液,用水驱污水和二元驱污水配制目的液,并测定目的液黏度;在相同搅拌时间下,测定不同转速对母液黏度的影响。结果表明:“软化清水+水驱污水”配制的目的液 黏度最大,“软化污水+二元驱污水”配制的目的液黏度最小,且在目的液中增加表面活性剂,对目的液黏度基本无影响;搅拌时间相同时,转速越小母液黏度越大。提出控制聚合物黏度的主要方法,一是筛选出适合油藏特性的聚合物类型,并通过改变聚合物分子结构增强其抗剪切和抗盐性能;二是选择合理的化学驱污水 处理工艺,降低不利因素对配制液黏度的影响;三是优化从配制、注入到运行操作的全过程工艺方案,保证聚 合物的充分熟化及聚合物溶液的流态稳定、改变双螺带搅拌器的运行方式和内部结构可以提高母液的熟化效率。  相似文献   
385.
等温溶解平衡法测定了283.2~323.2 K温度范围内NaCl在Zn(Ⅱ)-NaOH-H2O体系(cZn(Ⅱ)=0.6 mol/L、cNaOH=5.00mol/L)及NaOH-H2O体系(cNaOH=5.00 mol/L)中的溶解度。与NaOH-H2O、纯水体系相比,相同温度下NaCl在Zn(Ⅱ)-NaOH-H2O体系中溶解度最小。运用正交实验法对Zn(Ⅱ)-NaOH-H2O体系中NaCl的溶解度进行因素分析。结果表明,较高的cNaOH和cZn(Ⅱ)是造成NaCl溶解度急剧降低的主要原因,提高温度虽然对NaCl的溶解有促进作用但影响较小。最后,通过加热浓缩方式提高溶液NaOH和Zn的浓度,促使NaCl因溶解度骤降而结晶析出,首次实现了碱锌溶液中高浓度Cl-的大量去除。实验结果具有重要的工程应用价值。  相似文献   
386.
石油裂解气中汞的形态主要有气态汞和颗粒态汞。《空气和废气监测分析方法》(第四版),废气中汞有高锰酸钾溶液吸收法和玻璃纤维滤膜(滤筒)两种采样方法。溶液吸收法适合气态汞采样,滤膜(滤筒)采样法适合颗粒态汞采样。本文将两种采样方法串联对某石化企业的石油裂解气总汞进行监测分析,结果表明:石油裂解气中颗粒态汞与气态汞比例约为1:9;气态汞样品平行性较好,两个点位6次RSD值分别为17.2%和17.0%;颗粒态汞两个点位6次RSD值分别为25.3%和23.1%。建议对石油裂解气总汞监测采用玻璃纤维滤膜和高锰酸钾溶液吸收法串联采样。  相似文献   
387.
采用顶空气相色谱法对水中吡啶进行测定,探讨了溶液初始pH值、NaCl浓度、顶空平衡温度和平衡时间等因素对吡啶溶液峰面积的影响。结果表明:随着溶液初始pH值和ρ(NaCl)的增大,吡啶溶液峰面积均先上升,最终分别于pH为7. 0,ρ(NaCl)为300 g/L时趋于平稳;吡啶溶液峰面积随着顶空平衡温度和平衡时间的升高均先缓慢增加,随后迅速上升至临界值后再明显下降,其相应的临界值分别为85℃和40 min。通过正交实验确定各个因素影响吡啶溶液峰面积的主次顺序为:溶液pH值>顶空平衡温度>顶空平衡时间>ρ(NaCl),其相应的最优顶空条件分别为pH 7. 0,85℃,10min,300 g/L。此方法的检出限为0. 0012 mg/L,平均加标回收率为98. 8%~102. 4%,RSD为2. 20%~4. 68%(n=5)。  相似文献   
388.
目前用于土壤中六价铬检测的提取方法较为单一,一般是使用HJ 1082—2019《土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法》中提到的碱溶液提取法. 但该方法在进行大批量土壤检测时存在耗时长、试剂用量大、温度不易控制等问题. 因此,建立高效、准确的土壤中六价铬测试方法,对开展土壤中六价铬污染风险评价及修复工作具有十分重要的意义. 本研究提出了微波消解火焰原子吸收光谱法,用于快速、准确测试土壤中六价铬. 通过开展提取剂组成与用量、微波消解方式、消解液过滤及pH调整等参数优化研究,确定了土壤中六价铬提取与测试的优化条件:消解液组成为碱性提取液20 mL、氯化镁100 mg、磷酸氢二钾-磷酸二氢钾缓冲溶液0.2 mL,3次微波消解,消解液用中速定量滤纸过滤,待测液pH调节至7.0~8.0. 在优化条件下,土壤六价铬的有证标准样品的测量结果均在标准值范围内,土壤基体加标回收率为85.5%~88.7%,相对标准偏差为7.6%~8.0%. 与HJ 1082—2019相比,本文建立的微波消解火焰原子吸收光谱法更适用于大批量土壤样品的六价铬检测分析,所采用的微波消解技术,操作相对简单、提取效率较高,易于在不同种类实验室中普及和推广,可为土壤中六价铬的快速准确检测提供技术支持和方法补充.   相似文献   
389.
在田间条件下,运用土壤溶液原位抽提和毛细管电泳分析等技术,比较了芦竹(Arundo donaxLinn)和香蒲(Typhalatifolia)根表铁氧化物胶膜数量、土壤根际溶液磷质量浓度、根际土和根际溶液pH及根膜比等的差异,阐明了湿地植物根表铁氧化物胶膜对磷素从非根际土壤-根际土壤-根际溶液-根表铁氧化物胶膜-根系的迁移过程的影响以及在磷素净化中的根际调控机制.结果表明,芦竹和香蒲根表铁氧化物胶膜数量(以根系鲜重计)分别为20 170.8和7 640.3 mg/kg.有铁氧化物胶膜沉积的芦竹、香蒲的根际土有效磷含量分别是28.85、34.99 mg/kg;各比其无铁氧化物胶膜增加了46.2%、21.9%.有铁氧化物胶膜沉积的芦竹、香蒲的根际溶液磷质量浓度为0.65、0.56 mg/kg,分别比其无铁氧化物胶膜沉积高9.2%、33.9%.芦竹根表铁氧化物胶膜吸附的磷占根系吸附吸收磷的81.7%,香蒲是85.7%.根表有铁氧化物胶膜沉积的芦竹磷素利用有效性比无铁氧化物胶膜的植株高16.5%,香蒲高31.4%.有铁氧化物胶膜沉积的芦竹和香蒲植株体内磷含量均比无铁氧化物胶膜高.同时,铁氧化物胶膜对磷酸盐的吸附提高了磷酸盐从非根际向根际、固相(根际土壤)向液相(根际土壤溶液)的迁移速率.有铁氧化物胶膜沉积的湿地植物根际土有效磷含量累积,无铁氧化物胶膜沉积的湿地植物根际土有效磷含量耗竭.  相似文献   
390.
关于成矿流体地球化学研究的几个问题   总被引:1,自引:0,他引:1  
成矿流体地球化学是当前正蓬勃发展的流体地质学研究的一个重要分支。本文对八十年代以来国际上关于成矿流体地球化学研究的几个问题做了阐述,涉及到元素在熔体-溶液平衡体系中的分配、热水溶液系统中成矿元素的配合物形式及其主要影响因素,金属从成矿流体中沉淀机理研究等。提出了在成矿流体地球化学研究方面应重视的问题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号