首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   43篇
  国内免费   147篇
安全科学   44篇
废物处理   32篇
环保管理   21篇
综合类   374篇
基础理论   47篇
污染及防治   70篇
评价与监测   21篇
灾害及防治   14篇
  2024年   5篇
  2023年   20篇
  2022年   31篇
  2021年   42篇
  2020年   36篇
  2019年   36篇
  2018年   23篇
  2017年   27篇
  2016年   24篇
  2015年   20篇
  2014年   29篇
  2013年   28篇
  2012年   26篇
  2011年   25篇
  2010年   12篇
  2009年   19篇
  2008年   19篇
  2007年   17篇
  2006年   17篇
  2005年   11篇
  2004年   11篇
  2003年   29篇
  2002年   9篇
  2001年   19篇
  2000年   16篇
  1999年   9篇
  1998年   15篇
  1997年   15篇
  1996年   13篇
  1995年   1篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
排序方式: 共有623条查询结果,搜索用时 31 毫秒
41.
基于DFT计算,优选出甲基对硫磷(MP)和功能单体甲基丙烯酸(MAA),4-乙烯基吡啶(4-VP)的配比为1∶2∶1,采用表面引发原子转移自由基聚合(SI-ATRP)技术,制备了核壳式磁性甲基对硫磷分子印迹聚合物(Fe_3O_4@MPIPs).通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶变换红外光谱仪(FTIR)、X-射线衍射仪(XRD)和振动样品磁强计(VSM)对该磁性印迹聚合物进行了表征,并结合磁固相萃取(M-SPE)技术和气相色谱(GC)研究了其对MP的吸附行为,结果表明,Fe_3O_4@MPIPs对模板分子MP具有良好的特异性识别作用,在30 min内快速达到吸附平衡,最大吸附量为11.5 mg·g~(-1);与乐果和马拉硫磷相比,Fe_3O_4@MPIPs对MP的选择性系数分别为4.57和5.10,相对选择性系数分别为4.11和4.18.气相色谱检测结果表明,该磁性印迹聚合物可用于土豆样品中MP的快速分离富集,其加标回收率为87.4%—99.4%,RSD为3.6%—4.5%;重复使用5次后,Fe_3O_4@MPIPs回收率仍在90.3%以上,吸附量仍保持在第1次吸附量的82%以上.  相似文献   
42.
为探究铁磁流体对煤体瓦斯解吸性能的影响,采用水浴恒温吸附解吸系统,开展0.44,0.65,1.14 MPa 3组不同平衡压力下加铁磁流体前后的瓦斯解吸对比实验,根据Langmuir方程经验公式计算瓦斯极限解吸量和初始扩散系数,分析铁磁流体对煤体瓦斯解吸影响的机理。结果表明:在3组不同平衡压力下加入铁磁流体后瓦斯极限解吸量由2.5,10,20 mL/g降低为2.22,3.33,10 mL/g,降低11.2%,66.7%,50%;初始扩散系数由0.997 1,1.629 9,3.888 3 μm2·s降低为0.685 5,0.997 1,2.933 5 μm2·s,降低31.25%,38.82%,24.56%。在铁磁流体的作用下,煤体瓦斯解吸性能得到大幅降低。  相似文献   
43.
以共沉淀法制备的纳米Fe3O4为核,以正硅酸乙酯为硅源,通过溶胶-凝胶法制备了SiO2@Fe3O4壳-核结构纳米颗粒,再以钛酸四丁酯为钛源,通过溶胶-凝胶法、经焙烧制得TiO2/SiO2@γ-Fe2O3磁性纳米光催化剂。采用X射线衍射仪、透射电子显微镜、比表面分析仪、振动磁强计对光催化剂的结构进行了表征,以苯酚溶液为模拟废水对光催化剂的光催化性能进行了评价。实验结果表明:经500℃焙烧的光催化剂活性相为锐钛矿型TiO2;在苯酚溶液初始浓度为0.2mmol/L、苯酚溶液pH为7的条件下,COD去除率为70.9%。  相似文献   
44.
在超临界CO2流体环境下,当温度达到240℃以上时,印刷线路板就会发生分层现象。同时,在实验中发现在非超临界流体环境下,当温度达到260℃以上时,线路板也会发生分层现象。从线路板粘接材料发生热解反应的角度出发,在对比超临界CO2流体环境下与非超临界流体环境下的线路板分层效果的基础上,对超临界CO2流体环境下的线路板分层...  相似文献   
45.
蒋绍阶  王洪武 《环境工程学报》2019,13(10):2347-2356
采用常温搅拌法,在聚苯乙烯磺酸钠(PSS)处理过的Fe_3O_4表面诱导生长ZIF-8壳层,成功合成了磁性核壳金属有机骨架Fe_3O_4@ZIF-8,并对其吸附去除偶氮染料刚果红的性能进行了探究,考察了刚果红初始浓度和接触时间、Fe_3O_4@ZIF-8投加量以及pH对刚果红去除的影响。SEM、TEM、XRD、FT-IR及VSM表征结果证明,ZIF-8纳米颗粒已成功负载于Fe_3O_4表面,形成了典型的核壳结构,并且具有优异的磁学性能。吸附实验结果表明,反应最佳pH为6,吸附剂投加量为500 mg·L~(-1);当反应时间达到180 min时,吸附达到平衡。吸附反应的吸附动力学和吸附等温线分析表明,刚果红染料在Fe_3O_4@ZIF-8上的吸附动力学符合二级动力学方程,吸附等温线符合Langmuir模型。Fe_3O_4@ZIF-8吸附剂对刚果红具有高效的选择吸附性能并且在循环吸附中展现出良好的循环吸附性能。因此,磁性核壳金属有机骨架Fe_3O_4@ZIF-8作为吸附剂在去除刚果红染料方面有着广阔的应用前景。  相似文献   
46.
合成了一种高吸附容量的磁性生物炭负载Mg-Fe水滑石复合材料(L-BC),并用于去除水中的Cd2+和Ni2+。表征结果表明,采用浸渍联合热解法成功制备了磁性生物炭(M-BC),水热合成法成功地将Mg-Fe水滑石负载在M-BC上。动力学研究结果表明,Cd2+和Ni2+吸附符合伪二级动力学模型,化学吸附为速率控制步骤。等温吸附研究结果表明,L-BC对Cd2+和Ni2+的吸附符合Langmuir模型,为单分子层化学吸附,最大吸附量分别为263.156 mg/g和43.291 mg/g。吸附机理主要为Mg-Fe水滑石层间CO32-和表面羟基与Cd2+和Ni2+产生表面共沉淀。L-BC具有良好的吸附和重复利用性能,是一种很有前景的去除Cd2+和Ni2+的吸附材料。  相似文献   
47.
磁性海泡石吸附Cr(VI)特性及动力学   总被引:1,自引:0,他引:1  
采用化学共沉淀法合成磁性海泡石,通过静态吸附实验研究磁性海泡石对Cr(Ⅵ)的吸附特性及其动力学。结果表明,磁性海泡石对Cr(Ⅵ)的吸附在90 min内即可达到平衡;体系的初始pH是影响磁性海泡石吸附Cr(Ⅵ)性能的重要因素;当废水中Cr(Ⅵ)的初始浓度为50 mg/L时,磁性海泡石的适宜投加量为10 g/L;随反应温度的升高,磁性海泡石对Cr(Ⅵ)的吸附量增加;温度为25、35和45℃时,磁性海泡石对Cr(Ⅵ)的饱和吸附量分别为3.32、3.72、4.08 mg/g;吸附动力学曲线可以用拟二级反应动力学模型拟合;内扩散和液膜扩散联合控制Cr(Ⅵ)在磁性海泡石上的吸附过程,其中内扩散的控速作用大于液膜扩散。  相似文献   
48.
采用水相共沉淀法制备小尺寸磁性Fe3O4纳米颗粒,以没食子酸作为还原剂和表面修饰剂,还原Ag[(NH3)2]+制备出Fe3O4/Ag磁性纳米颗粒。研究该磁性纳米颗粒对水溶液中铅离子的吸附行为,研究结果表明,pH为7.0,吸附温度30℃时可得到最好的处理效果,铅的去除率可达99.7%以上,Fe3O4/Ag颗粒吸附行为符合二级动力学模型(R2 > 0.99)。该磁性纳米颗粒经过多次再生处理后,仍具有很好的吸附效果,表明Fe3O4/Ag在水处理方面拥有良好的应用前景。  相似文献   
49.
采用一种简便的方法对埃洛石纳米管进行加磁,得到的磁性埃洛石纳米管(MHNTs)利用x射线衍射仪(XRD)、透射电子显微镜(TEM)、振动样品磁强计(VSM)和原子吸收光谱仪(AAS)进行表征,结果表明,MHNTs具有很强的磁性性能(Ms=34.02emu/g)以及较低损失磁性粒子的性能。制备的MHNTs作为吸附剂吸附水溶液中的盐酸土霉素,并且探索反应温度、溶液pH和起始浓度等对MHNTs吸附盐酸土霉素性能的影响。研究表明,Langmuir等温线模型更优于Freundlich等温线模型,其动力学的研究结果利用拟二阶方程能够很好地进行说明。此外,MHNTs作为吸附剂经过3次的重复使用吸附能力没有明显的降低。  相似文献   
50.
应用磁性分散固相萃取技术对环境水体中有机磷化合物进行萃取测定,并对萃取剂的用量、萃取时间、解吸溶剂、盐度等实验影响因素进行了优化。在优化条件下,有机磷的回收率为80.1%~93.1%,相对标准偏差为4.6%~5.9%,检出限为0.000 2~0.000 4 mg/L。与传统的液液萃取及固相萃取相比,该磁性分散固相萃取方法操作更为简单、迅速,有机溶剂消耗量很少,方法环保。能很好的满足环境水体中有机磷化合物的测定。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号