全文获取类型
收费全文 | 10770篇 |
免费 | 873篇 |
国内免费 | 4010篇 |
专业分类
安全科学 | 610篇 |
废物处理 | 403篇 |
环保管理 | 1152篇 |
综合类 | 9085篇 |
基础理论 | 1779篇 |
污染及防治 | 2145篇 |
评价与监测 | 301篇 |
社会与环境 | 136篇 |
灾害及防治 | 42篇 |
出版年
2024年 | 135篇 |
2023年 | 392篇 |
2022年 | 502篇 |
2021年 | 588篇 |
2020年 | 455篇 |
2019年 | 468篇 |
2018年 | 315篇 |
2017年 | 398篇 |
2016年 | 481篇 |
2015年 | 574篇 |
2014年 | 895篇 |
2013年 | 624篇 |
2012年 | 746篇 |
2011年 | 780篇 |
2010年 | 734篇 |
2009年 | 750篇 |
2008年 | 743篇 |
2007年 | 761篇 |
2006年 | 725篇 |
2005年 | 628篇 |
2004年 | 609篇 |
2003年 | 603篇 |
2002年 | 444篇 |
2001年 | 356篇 |
2000年 | 320篇 |
1999年 | 270篇 |
1998年 | 255篇 |
1997年 | 167篇 |
1996年 | 177篇 |
1995年 | 189篇 |
1994年 | 141篇 |
1993年 | 105篇 |
1992年 | 110篇 |
1991年 | 76篇 |
1990年 | 66篇 |
1989年 | 61篇 |
1988年 | 2篇 |
1987年 | 4篇 |
1986年 | 4篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
161.
HRT对瓷粒BAF处理生活污水效能的影响 总被引:3,自引:1,他引:2
通过实验室模型试验研究了瓷粒曝气生物滤池处理生活污水的效能,分析了在气水比一定的条件下,水力停留时间(HRT)变化对曝气生物滤池处理效能及运行特性的影响规律。考察了不同HRT运行下,COD、NH4+-N、NO2--N、NO3--N、TN、SS等指标的变化,结果表明,当进水COD为280~320mg/L,气水比为3:1,HRT为10h的条件下,处理效果最好,其中COD、NH4+-N、TN、SS的平均去除率分别为92.6%、97.8%、34.7%、84.2%。当HRT逐渐降低时,以上指标的去除效果都有所下降,但去除效能的下降与HRT的降低不呈线性关系。当HRT降至3h,去除效能有一定程度的上升,COD、NH4+-N、TN、SS的去除率有所增加。 相似文献
162.
163.
实验针对间歇投配污水的生物渗滤池处理生活废水的一些基本运行参数进行了优化研究。通过对生物渗滤池的出水量、不同填料性质、不同填料粒径以及不同进水水质与污染物(COD)去除率影响的研究,证实该系统的水力负荷与污染物去除率成反向关系,即当水力负荷减少时,污染物去除率会相对增加;研究还表明选用粒径为0.9~2mm自然河沙作为系统填料时,系统COD去除率较高,这时填料不易被堵塞且即使堵塞也较易恢复;运用生物渗滤池处理城市生活污水能使处理后污水COD达到城镇污水处理厂出水排放标准的一级标准。提高污水中营养物质的配比以及采用多级生物渗滤池联用,能高效处理高浓度污水,甚至使出水达标排放。 相似文献
164.
一株好氧反硝化菌的反硝化性能研究 总被引:6,自引:2,他引:4
从长期运行的生物滤塔中筛选出一株好氧反硝化菌株A1,经鉴定为恶臭假单胞菌Pseudomonas putida。文章目的是对A1的反硝化特性进行研究,结果表明A1菌株在好氧条件下能有效去除培养液中的硝酸盐氮,24h脱氮率可达到94.84%。C/N对菌株A1的好氧反硝化能力有很大影响,当C/N>5时,基本能够进行完全的反硝化。和其他已报道的好氧反硝化菌相比,A1菌株有着更高的氧耐受浓度。菌株A1能够以硝酸盐或亚硝酸盐和氧气为电子受体进行协同呼吸,硝酸盐呼吸和亚硝酸盐呼吸都具有较高的脱氮效率,并且亚硝酸盐呼吸要较硝酸盐呼吸更容易进行。以丁二酸盐、葡萄糖和乙酸盐作为碳源时,其脱氮效果均要明显好于乙醇作为碳源。 相似文献
165.
高效烃类降解菌在稠油污水生化处理中的应用 总被引:2,自引:0,他引:2
从稠油污水中筛选出四株高效烃类降解菌株,经初步鉴定HD-1、HD-2、HD-4为假单胞菌属,HD-3为芽孢杆菌属。研究了菌株对高温高盐环境的耐受性,采用正交试验法确定了最佳降解效果时各菌的投加量。同时采用生物接触氧化工艺进行了室内模拟实验,探索了高温环境下所筛选菌株对稠油污水的处理效果,重点研究菌株对含油量和COD的去除能力。通过逐渐缩短停留时间,最终将停留时间缩短为8h,发现这种条件下,出水的含油量<1mg/L,达到了高压注汽锅炉用水的标准,对COD的去除率达到70%,去除效果也非常显著。 相似文献
166.
乙醇对含水层中燃油芳香烃内在生物修复的潜在风险 总被引:1,自引:0,他引:1
内在生物修复,是在没有工程措施促进的情况下利用土著微生物降解含水层内灾害性物质的一种修复技术,在燃油烃污染管理方面具有显著的成本效益。该技术需要确定自然衰减过程,并能够继续提供有效的风险保护。针对燃油污染含水层,北美与欧洲认为内在生物修复是值得优先考虑的应用技术。然而,随着乙醇燃油的推广使用,我国在应用这样的经验时需要考虑乙醇的潜在影响。现有的文献研究表明乙醇存在能够阻止燃油主要污染物芳香烃(BTEX)的生物降解,降低水环境的pH值,并可能增强BTEX在水中的溶解性,或存在对生物的毒性,或因为乙醇降解降低介质的渗透性能。因此,需要更好地认识乙醇的潜在风险,为发展乙醇燃油污染含水层修复策略提供科学依据。 相似文献
167.
生物除磷系统启动期聚磷菌的FISH原位分析与聚磷特性 总被引:11,自引:4,他引:7
应用FISH对以乙酸钠为碳源的强化生物除磷 (EBPR) SBR反应器启动期的微生物进行原位分析,考察除磷生态系统形成过程中聚磷菌种群结构、空间分布关系动态变化及其聚磷特性.结果表明,以异养菌为主的活性污泥经过厌氧/好氧驯化后,聚磷菌大量富集,在全菌中的比例由11.5%增加到40.48%.启动过程中,生物系统内菌群竞争持续进行:首先,聚磷菌淘汰异养菌,历时5 d;聚磷菌种群内选择过程历时19 d;经过优势聚磷菌群的二次增长后,共计34 d完成生物除磷系统的启动.富集过程中快速增殖的聚磷菌不能立刻行使除磷能力,要有一段“积累期”形成一定的PHA和poly-P储备.表现为污染物去除效率滞后于聚磷菌的增殖,经过4~8 d的 “积累期”后上升出现峰值.二次增长的优势聚磷菌群也经过“积累期”后才发挥作用.FISH图片显示,快速增殖期的聚磷菌菌体小,菌群结构松散.经过“积累期”之后,菌体不断增大,并开始紧密聚集形成致密的团状,此时反应器处理效率较高. 相似文献
168.
低温时污泥膨胀对MBR中膜污染的影响 总被引:3,自引:3,他引:0
通过一体式膜生物反应装置考察了在低温条件下发生污泥膨胀过程中反应器的运行效果和膜污染的情况,并从微生物角度分析了引起膜污染的因素.结果表明,低温时COD上清液和出水平均去除率分别为85%和92%,发生丝状菌污泥膨胀后去除率变化不大.MBR中丝状菌污泥膨胀形成的过程中,污泥沉降性变差,丝状菌丰度(FI)由2增加到5,丝状菌伸出絮体形成网状结构.低温时膜操作压力随时间呈直线变化,膜组件的水力清洗周期为15 d.在丝状菌大量繁殖时缩短到7 d,膜污染严重.通过测定活性污泥的特性,发现膨胀污泥的胞外聚合物(EPS)总量是正常污泥的3倍,污泥絮体相对疏水性(RH)随FI的提高而增大.EPS和RH增大后会引起更多物质沉积到膜表面,使膜污染速率提高,膜的运行周期变短.进一步的分析表明,混合液粘度、Zeta电位、污泥絮体形态也是影响膜污染的因素. 相似文献
169.
氯对模拟管壁生物膜的氧化特性研究 总被引:2,自引:2,他引:0
以载片上培养的大肠杆菌生物膜为对象,研究了氯对模拟管壁生物膜中大肠杆菌的灭活效果,同时考察氯氧化生物膜后水中生物可同化有机碳(AOC)、生物可利用磷(MAP)和细菌生长潜能(BRP)的变化情况.结果表明,氯可以有效灭活悬浮态的大肠杆菌,而对生物膜中的大肠杆菌的灭活效率远低于悬浮菌;在相同CT值下,较高浓度的氯对悬浮态和生物膜中大肠杆菌的灭活效果要高于低浓度的氯.氯对生物膜的氧化作用会使生物膜中物质溶出,增加了水中AOC和MAP浓度,如当氯的浓度为1.0 mg/L(CT值为100 mg·min/L)时,水中AOC由20.78 μg/L增加到120.17 μg/L,MAP含量由0.11 μg/L增加到0.17 μg/L;氯的氧化作用会增加水的细菌生长潜能(BRP),BRP随着CT值的增加而增加,如当氯投量为1.0 mg/L(CT值为100 mg·min/L)时,BRP可达到1.10×107 CFU/mL. 相似文献
170.
蚯蚓生物滤池启动驯化阶段蚯蚓生理生态适应性研究 总被引:2,自引:0,他引:2
研究了蚯蚓生物滤池在启动驯化阶段蚯蚓的生理生态状态变化,并分析了相关影响因素.结果表明,由于受到自然环境和滤池环境的胁迫,蚯蚓投加后数量和生物量出现逐渐下降的趋势.一旦条件适宜,幼蚓的孵化可以补充滤池内蚯蚓的数量和生物量.随着温度的升高,周边的蚯蚓逐渐向布水区移动,投加58d后蚯蚓分布较为均匀.蚯蚓密度和含水率之间存在着极显著负相关.温度、日平均降水量和降水强度积分3个自然影响因子对蚯蚓各生态指标的影响均不显著.温度低于15℃时,蚯蚓呼吸率变化较为敏感,出现大幅度下降,不利于蚯蚓代谢处理污水污泥.在一定范围内,采取措施提高滤池内蚯蚓的密度并使蚯蚓分布均匀将提高污泥的处理效率. 相似文献