首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2414篇
  免费   240篇
  国内免费   888篇
安全科学   194篇
废物处理   151篇
环保管理   159篇
综合类   1998篇
基础理论   364篇
污染及防治   517篇
评价与监测   134篇
社会与环境   9篇
灾害及防治   16篇
  2024年   68篇
  2023年   161篇
  2022年   192篇
  2021年   179篇
  2020年   117篇
  2019年   113篇
  2018年   58篇
  2017年   69篇
  2016年   100篇
  2015年   120篇
  2014年   204篇
  2013年   144篇
  2012年   142篇
  2011年   156篇
  2010年   158篇
  2009年   177篇
  2008年   162篇
  2007年   162篇
  2006年   162篇
  2005年   119篇
  2004年   120篇
  2003年   107篇
  2002年   91篇
  2001年   68篇
  2000年   66篇
  1999年   62篇
  1998年   39篇
  1997年   33篇
  1996年   34篇
  1995年   36篇
  1994年   38篇
  1993年   24篇
  1992年   18篇
  1991年   16篇
  1990年   10篇
  1989年   14篇
  1988年   1篇
  1986年   2篇
排序方式: 共有3542条查询结果,搜索用时 982 毫秒
861.
采用树脂吸附脱附的方法对厌氧膜生物反应器(AnMBR)中溶解性微生物代谢产物(SMP)的6种亲疏水性有机物进行了分离,其中,亲水中性物质是SMP的主要成分,占总有机物的74.84%.多糖、蛋白质和腐殖质类物质在亲疏水性有机物中均有分布.采用恒压死端过滤的方式对比分析了6种亲疏水性有机物的微滤特性,发现在TOC浓度相同的条件下,亲水性碱(HIB)是造成膜通量下降最快的物质,其次是亲水中性物(HIN)和疏水性酸(HOA),膜通量下降速率与有机物平均粒径呈指数相关关系(R2=0.9965).采用过滤模型对微滤过程进行拟合,HOA、HIN和HIB的过滤过程分别符合标准堵塞模型、中间过滤模型和滤饼过滤模型的特征,与其粒径分布特征相对应.试验进一步对比了亲疏水性有机物污染层的可逆性,结果表明HIN造成的膜污染不易通过物理反冲洗得到恢复.  相似文献   
862.
建立膜电解电化学氢自养MBBR反应器(移动床生物膜反应器)用于去除水中高氯酸盐,微生物利用阴极电解产生的氢气将高氯酸根还原为氯离子,而后氯离子在阳极发生氧化析氯反应生成活性氯进一步提升出水水质,从而实现高氯酸根的深度转化.利用该反应器研究了高氯酸根的转化过程及相关影响因素,结果表明:进水ClO4-浓度为(4.98±0.091)mg/L,维持HRT(水力停留时间)为4h,施加电流由6mA增加至15mA,反应器对高氯酸根的去除率由(39.75±2.09)%增加至(98.99±0.05)%,总出水活性氯浓度由(0.057±0.003)mg/L增加至(0.070±0.002)mg/L,pH值稳定在7.96~8.11,浊度较低为(0.89±0.27)NTU.进一步增大施加电流(20mA),导致阴极室溶液pH值超过9.5,进而影响微生物活性,去除率急剧下降至(30.75±1.19)%.利用扫描电子显微镜(SEM)观察反应器内微生物形貌,发现反应器内微生物均附着于填料表面,以短杆菌为主,增殖缓慢.运用高通量测序技术对接种及运行第24d的微生物群落结构展开分析.结果显示,反应器运行过程中,菌群多样性下降,Thauera菌属为主要的氢自养还原优势菌属,其丰度达到8.25%.  相似文献   
863.
主要通过浸没式平板膜生物反应器的膜污染阻力分布和膜表面的污染特性来分析波纹微通道湍流促进器减缓浸没式平板膜生物反应器的膜污染效果.结果表明,波纹微通道湍流促进器有效地降低了总阻力Rt,降低率达到68.01%,其中的Rrf、Rc和Rp+Ra分别降低54.20%、87.98%和84.00%;滤饼层厚度、有机和无机污染成分都减少,且污染层更易去除.综合膜污染阻力分布和膜表面污染物表征结果从扰流作用强化机理、逆扩散机理、絮凝机理和微孔强化过滤机理四个方面分析了波纹微通道湍流促进器减缓浸没式平板膜生物反应器膜污染的效果.  相似文献   
864.
以Bi(NO_3)_3、KBr、Na_2S和Cd(NO_3)_2等为原料,依次采用溶剂热法和多次浸渍法,制备了具有可见光活性的BiOBr/CdS复合微球催化剂,并通过X射线衍射仪(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM)等表征手段对合成的催化剂进行表征,并以罗丹明B作为目标污染物,在可见光的照射下,考察了复合材料的有机污染物降解能力。结果表明,在光照时间为120min时,罗丹明B染料的降解率可达85%,相对于纯的CdS和BiOBr而言,所制备的BiOBr/CdS异质结催化剂具有良好的光催化活性和良好的可见光响应能力。主要原因可归因于异质结结构能很好地促进光生载流子的分离和迁移。  相似文献   
865.
采用液相还原法制备纳米铁炭颗粒,探讨制备过程中搅拌速率、硼氢化钠的投加速率、加炭时间、炭铁比的影响,并对材料进行TEM、SEM、XRD、XPS表征。结果表明:制备的材料为纳米铁炭复合材料,复合材料孔隙多,比较松散,纳米铁颗粒为椭球形,能负载在层状的活性炭上,活性炭能缓解部分纳米铁颗粒的团聚现象;在炭铁比为0.4,硼氢化钠投加速率为20 m L/min,加炭时间为10 min,搅拌速率为500 r/min的最优条件下制备得到的材料,其对硝酸盐氮的去除率为94.3%。  相似文献   
866.
微纳米气泡的出现及其不同于普通气泡的特点,使其在水处理等领域显现出优良的技术优势和应用前景。介绍了微纳米气泡以及其比表面积大、停留时间长、自身增压溶解、界面ζ电位高、产生自由基、强化传质效率等特点,论述了微纳米气泡在水体增氧、气浮工艺、强化臭氧化、增强生物活性等环境污染控制领域的应用研究。之后重点阐述了微纳米气泡发生装置及其发生机理,提出开发结构简单、能耗更低、性能更优的发生装置是微纳米气泡技术未来研究的重点。  相似文献   
867.
铁碳微电解处理染料污水的影响因素筛选与优化   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高铁碳微电解处理染料废水中CODCr去除率,将Plackett-Burman和Box-Behnken试验设计方法相结合应用于废水处理条件的筛选与优化. Plackett-Burman设计试验结果表明:铁碳比(体积比)、反应时间和曝气量是影响铁碳微电解处理染料废水CODCr去除率的3个关键性因素. Box-Behnken试验设计方法和三维响应面分析表明,铁碳微电解处理染料废水对CODCr去除率的最优化操作条件是铁碳比为3∶2、反应时间为120 min、曝气量为40 L/min. 在该优化条件下,当ρ(CODCr)在1 000~10 000 mg/L之间变化时,CODCr去除率的试验结果均落在模型预测结果的95%置信区间(75.5%~83.3%)内,说明模型能对铁碳微电解处理结果进行良好的预测,因此具有一定的可信度.   相似文献   
868.
利用铁碳微电解-微波强化Fenton联合工艺处理垃圾渗滤液膜滤浓缩液,探讨了微波功率、微波作用时间、H2O2投加量对微电解出水处理效果的影响。同时将铁碳微电解出水COD浓度、微波功率、微波作用时间、H2O2投加量对处理效果的影响建立了正交试验,结果表明:各因素对COD去除率影响的主次关系为:微电解出水COD微波功率H2O2投加量微波作用时间。  相似文献   
869.
以核桃壳为原料,利用溶剂热法制备了磁性炭微球(MCMs),结合表面印迹技术制备了基于MCMs的磁性炭微球表面分子印迹材料(MMIPs).通过FT-IR、TGA、VSM和TEM等表征手段对其理化性能进行了表征,结果表明MMIPs为球形,印迹聚合层厚度50~80 nm,具有热稳定性和磁稳定性.采用吸附实验研究了MMIPs对AMP的识别与选择性吸附性能.Langmuir等温模型能较好地描述MMIPs对AMP的吸附平衡数据,25℃时MMIPs的单分子层最大吸附容量为40.96 mg·g-1.准二级动力学模型能较好的描述MMIPs对AMP吸附动力学行为.选择性分析结果表明,MMIPs对AMP具有较好地选择识别性,并且MMIPs可以循环使用5次.结合高效液相色谱分析技术,MMIPs已成功应用于牛奶样品中痕量AMP的分离、富集和回收,AMP的回收率为92.78%.  相似文献   
870.
四氢呋喃是1种难生物降解、具有生物抑制性的杂环有机物,四氢呋喃废水属难处理的化工废水之一。采用铁炭微电解和Fenton催化氧化相结合的预处理工艺可以对四氢呋喃成分进行破坏和分解实验,从而降低生物抑制性并改善可生化性,为后续厌氧处理奠定良好的基础。实验结果表明,原水直接经微电解后,COD去除率稳定在30%左右;原水经微电解+Fenton(COD去除率50%)后,厌氧处理阶段COD去除率可达80%左右。实际工程中,Fenton的COD去除率建议控制在20%~30%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号