首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
  国内免费   4篇
废物处理   41篇
环保管理   4篇
综合类   6篇
污染及防治   4篇
社会与环境   1篇
  2021年   3篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
31.
Due to increasing pressure from the European Union to meet recycling and recovery targets, (e.g. the packaging waste, waste electronic equipment and landfill directives), both the Irish and England's governments’ policy on waste management is changing to meet these pressures, with major emphasis upon the management of biodegradable municipal waste (BMW). In particular, the EU landfill directive requires reductions in the rate of biodegradable waste going to landfill to 35% by 2016. The objective of this paper is to examine how Ireland plans to meet this challenge and to compare the Irish strategy to that being adopted in England. The approach in England is driven by a clear understanding that the practice in the late 1990s was unlikely to ensure compliance with EU targets by the set dates. England has therefore developed a discrete, programme (Waste Implementation Programme) to drive a new approach, based on rigorous science and international best practice, which includes a Demonstrator Programme for new technologies. The dynamic, high cost, large scale programme in England stands in sharp contrast to that for Ireland and only future, detailed analysis of outcomes will be able to evaluate the cost effectiveness of each.  相似文献   
32.
Influence of Fibers on the Mechanical Properties of Cassava Starch Foams   总被引:1,自引:0,他引:1  
The utilization of renewable resources in packaging can provide solutions to ecological problems such as waste quantity. Agricultural resources are alternative raw materials, among which there is starch, a natural polysaccharide that can be used to form resistant foam under wet and warm conditions. The starch foam is obtained by thermo pressing process where cassava starch, water and additives are processed to form a rigid structure by swelling, gelatinization and network formation. Natural fibers can be used to improve the mechanical properties of starch foams. In this project was investigated the influence of the addition of fibers in the levels of 1, 2 and 3% of cassava (short fiber) and 1, 2 and 3% of wheat fiber (powered fiber) in the starch dough. The foams were characterized by physical methods of strength, flexibility, density and by Scanning Electron Microscopy (SEM). The increase in fibers quantity has resulted in foams with higher density and less flexibility, whatever the fiber type. Most fibers quantity did not improve the foam strength. Foam made with 1% of cassava fiber showed higher compression strength; by increasing the percentage quantity there was a decrease on the compression resistance. Foam made with wheat fiber presented a lower result in 2%. The fiber type had no statistical significance in strength, flexibility and density foam. Only the fiber quantity was significant. The results showed that both fibers presented limited dimensions to improve the reinforcement of the starch foams up to 1%.  相似文献   
33.
Biomax® is an aliphatic-aromatic polyester. The biodegradability of Biomax® was studied at 58 °C using a laboratory scale bioreactor. The bioreactor was inoculated with bacteria derived from compost and supplemented with powdered Biomax® and an additional energy source. After a period of acclimation, the microorganisms in the bioreactor were capable of metabolizing the major components of the polymer, i.e., TPA and ethylene glycol. TPA and ethylene glycol were detected in the bioreactor only when they were added. Degradation and disintegration of the powdered Biomax® was monitored by laser diffraction. The particle size distribution of the powdered polymer progressively shifted toward smaller sizes until the diameters of the polymer particles were indistinguishable from bacteria. The types of microbes in the bioreactor were determined by analyzing 16S rRNA gene sequences. The bacteria belonged to 35 different groups, and the majority of the bacteria appeared to represent new species.  相似文献   
34.
Amorphous and crystallized poly(l-lactic acid) (PLLA-A and PLLA-C, respectively) films were prepared, and the proteinase K-catalyzed enzymatic degradation of UV-irradiated and non-irradiated PLLA-A and PLLA-C films was investigated for periods up to 10 h (PLLA-A) and 60 h (PLLA-C). The molecular weights of both the PLLA-A and PLLA-C films can be manipulated by altering the UV irradiation time. The enzymatic weight loss values of the UV-irradiated PLLA films were higher than or similar to those of the non-irradiated PLLA film, when compared with the specimens of same crystallinities. UV irradiation is expected to cause the PLLA films to undergo chain cleavage (a decrease in molecular weight) and the formation of C=C double bonds. It seems that the acceleration effects from decreased molecular weight on enzymatic degradation were higher than or balanced with the disturbance effects caused by the formation of C=C double bonds. After enzymatic degradation, a fibrous structure appeared on the spherulites of the UV-irradiated PLLA-C film. This structure may have arisen from chains containing or neighboring on the C=C double bonds, which were enzymatically undegraded and assembled on the film surface during enzymatic degradation. The results of this study strongly suggest that UV irradiation will significantly affect the biodegradation behavior of PLLA materials in the environment.  相似文献   
35.
As an attempt to synthesize new biodegradable polymers from renewable cellulose resources, melt polycondensation of 5-hydroxylevulinic acid (5-HLA) was reported for the first time. The resulting product, poly(5-hydroxylevulinic acid) (PHLA), was synthesized and characterized with GPC, FTIR, 1H NMR and DSC. The in vitro degradation behaviors in phosphate-buffered saline (PBS) and in deionized water (DW) were also examined. The molecular weight of PHLA is not high (several 1,000s), but it possesses unordinary high glass transition temperature (as high as 120 °C). This is very different from existing aliphatic polyesters that usually have T gs lower than 60 °C. The high T g is attributed to the formation of inter- and/or intramolecular hydrogen bonds due to a characteristic keto–enol tautomerism equilibrium in the polymer structure. PHLA readily degraded hydrolytically in aqueous media.  相似文献   
36.
可生物降解吸油材料发展现状与研究进展   总被引:4,自引:0,他引:4  
综述了近年来国内外可生物降解吸油材料的发展情况,探讨了其相关的降解机理及目前可生物解吸油材料发展中仍存在的一些问题,并指出可生物降解吸油材料将具有广阔的应用前景。  相似文献   
37.
Cellulose Fiber/Bentonite Clay/Biodegradable Thermoplastic Composites   总被引:1,自引:0,他引:1  
Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but fiber must be well dispersed to achieve any benefit. The approach to dispersing fiber in this study was to use aqueous gels of sodium bentonite clay. These clay-fiber gels were combined with powdered compostable thermoplastics and calcium carbonate filler. The composite was dried, twin-screw extruded, and injection molded to make thin parts for tensile testing. An experimental design was used to determine the effect of fiber concentration, fiber length, and clay concentration. Polybutylene adipate/terephthalate copolymer (PBAT) and 70/30 polylactic acid (PLA)/PBAT blend were the biodegradable plastics studied. The composite strength decreased compared to the thermoplastics (13 vs. 19 MPa for PBAT, 27 vs. 38 MPa for the PLA/PBAT blend). The composite elongation to break decreased compared to the thermoplastics (170% vs. 831% for PBAT, 4.9% vs. 8.7% for the PLA/PBAT blend). The modulus increased for the composites compared to the thermoplastic standards (149 vs. 61 MPa for PBAT, 1328 vs. 965 MPa for the PLA/PBAT blend). All composite samples had good water resistance.  相似文献   
38.
Abstract

The presence of pesticides, both persistent and biodegradable, in the environment is a problem which is both significant and potentially dangerous to humans. An index of biodegradability is presented which is based on the correlation between environmental stability and fat solubility. Halogenated pesticides are, therefore, both more fat soluable and more resistant to biodegradation, while methylated pesticides are more water soluable and, therefore, more biodegradable. Three methods for detecting low‐levels of halogenated pesticides are presented: the Macro, the Micro “Florisil,”; and the Micro “Silica.”; A method is also presented to detect these chemicals in blood. Two methods for the detection of nonpersistent, organophosphorus and carbamate insecticides, Cholinesterase inhibition and urinary metabolites, are described. Finally, methods of monitoring human exposure through the detection of phenols, phenoxy acids, alkyl phophates, and anilines are presented.  相似文献   
39.
Moisture sorption characteristics of microbial polysaccharide (Ps.C101) from Pseudomonas caryophilli and polyvinyl alcohol (PVA) blends have been carried out at 27°C for water activity from 0.1 to 0.9. The sorption data was used to fit six different sorption isotherm models proposed in literature. The model constants were determined by linear fitting of the sorption equations. The ranges of applicability of water activity for isotherm models reported in this paper lie in between 0.1 and 0.4 for Brunaur–Emmet–Teller (BET) model (monolayer), and in between 0.2 and 0.9 for other models. The value of the coefficient of determination (R2 = 0.97 ± 0.02) confirms the applicability of the equations studied.  相似文献   
40.
Biodegradable nanocomposites based on poly(butylene succinate)/organoclay   总被引:2,自引:0,他引:2  
In this work, we try to incorporate the inorganic system into the biodegradable polymers to compose an organic/inorganic polymer hybrid. Various nanocomposites of poly(butylene succinates) (PBS) with different ratios of organically modified layered silicates (OMLS) prepared by solution blending were investigated. The OMLS used for the preparation of nanocomposites were functionalized ammonium salts modified montmorillonite. The effects of OMLS on the nanocomposites were investigated by XRD, TEM, DMA and TGA in the aspect of the d-spacing of clay, mechanical and thermal properties. Interestingly, all these nanocomposites exhibited improved properties when compared with the pristine PBS sample. XRD indicates that the layers of clay were intercalated by the modifiers, and the interlayer distance of organoclay in the nanocomposites could be extended to about 29.4 Å. Moreover, the thermal stability of the nanocomposites was enhanced by the addition of organoclay via TGA study, closely related to the organoclay content in the PBS matrix. DMA data shows that the storage and loss moduli were concurrently enhanced by the addition of organoclay as compared to the pristine PBS sample. Moreover, the glass transition temperatures also increased about 5 to 20 °C (from DMA, peak of tanδ) for the various organoclay-containing samples. The enhanced mechanical and thermal properties can be achieved from these organoclay modified-nanocomposites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号