首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1739篇
  免费   164篇
  国内免费   153篇
安全科学   345篇
废物处理   36篇
环保管理   766篇
综合类   340篇
基础理论   274篇
污染及防治   145篇
评价与监测   84篇
社会与环境   36篇
灾害及防治   30篇
  2023年   28篇
  2022年   32篇
  2021年   63篇
  2020年   74篇
  2019年   57篇
  2018年   34篇
  2017年   56篇
  2016年   81篇
  2015年   84篇
  2014年   77篇
  2013年   85篇
  2012年   77篇
  2011年   115篇
  2010年   61篇
  2009年   128篇
  2008年   88篇
  2007年   85篇
  2006年   71篇
  2005年   79篇
  2004年   58篇
  2003年   68篇
  2002年   64篇
  2001年   50篇
  2000年   61篇
  1999年   52篇
  1998年   42篇
  1997年   26篇
  1996年   37篇
  1995年   24篇
  1994年   19篇
  1993年   17篇
  1992年   13篇
  1991年   11篇
  1990年   9篇
  1989年   14篇
  1988年   11篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   10篇
  1981年   9篇
  1980年   13篇
  1979年   15篇
  1978年   11篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
排序方式: 共有2056条查询结果,搜索用时 31 毫秒
111.
Contamination of groundwater by agrochemicals is now widely recognized as an extremely important environmental problem. Modern agricultural practices involve the combined use of irrigation with the application of large amounts of agrochemicals to maximize crop yield. Due to flood irrigation and natural runoff, agricultural activities might generate soil, surface water and groundwater contamination problems and leaching of pesticides. Modeling of the transport and fate of pesticides, such as simazine, may help understand the long-term potential risk to the subsurface environment. This paper illustrates a comparative study via the use of three different pesticide transport simulation models and the applicability of those models in determining the groundwater vulnerability to pesticides contamination in a citrus orchard located at the Lower Rio Grande Valley (LRGV). The three models used in the study are the pesticide root zone model-3 (PRZM-3), the pesticide analytical model (PESTAN) and integrated pesticide transport modeling (IPTM). The concentration values obtained from all three models are in agreement, and they show a decreasing trend from the surface through the vadose zone. The problem is how to use this information and, specifically, how to combine the testimony of a number of experts into a single useful judgment. With the aid of the fuzzy multiattribute decision making method, PRZM-3 is deemed as the most promising one for such precision farming applications.  相似文献   
112.
Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (QM1) and less labile (QM2). In citrate extractions, total extractability (QM1+QM2) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar QM1/QM2 ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth.  相似文献   
113.
With the increase in the number of municipal solid waste incineration (MSWI) plants constructed in China recently, great attention has been paid to the heavy metal leaching toxicity of MSWI residues. In this study, the effects of various parameters, including extractant, leaching time, liquid-to-solid ratio, leachate pH, and heavy metal content, on the release properties of Cd, Cr, Cu, Ni, Pb, and Zn from MSWI bottom ash were investigated. Partial least-squares analysis was employed to highlight the interrelationships between the factors and response variables. Both experimental research and geochemical modeling using Visual MINTEQ software were conducted to study the pH-dependent leaching behavior of these metals in fresh and weathered bottom ash, considering precipitation/dissolution and surface complexation reactions (adsorption by hydrous ferric oxide and amorphous aluminum oxide/hydroxide). The results showed that leachate pH was the predominant factor influencing heavy metal leachability. The leaching of Cu, Pb, and Zn was mainly controlled by precipitation/dissolution reactions, whereas surface complexation had some effect on the leaching of Cr, Cd, and Ni for certain pH ranges. The modeling results aggreed well with the experimental results. Part of this work was presented at the Fourth International Conference on Combustion, Incineration/Pyrolysis and Emission Control (i-CIPEC)  相似文献   
114.
The practice of contaminant transport and remediation has shown significant progress in recent years. However, despite the significant progress made, remediation efforts are often delayed by extremely long breakthrough curve tails that render efforts to bring the level of contaminants below the regulatory standards inefficient. One hypothesis is that these long tails are due to the reservoir-like slow diffusive processes in soil micropore zones. This study compares the effects of micropores at macroscopic and microscopic levels and establishes a link between these approaches for validation and calibration purposes. The link between macroscopic and microscopic levels is established through comparisons and testing of the two models while incorporating appropriate scale and boundary effects. Despite the differences in conceptual approaches and simulation time, the two approaches rendered meaningful results. The link helps forecast the effects of micropore zone transport processes in the subsurface efficiently and thus allows development of numerical tools that could contribute towards more efficient remediation design.  相似文献   
115.
In the crystalline rocks of the Canadian Shield, geochemical conditions are currently reducing at depths of 500-1000 m. However, during future glacial periods, altered hydrologic conditions could potentially result in enhanced recharge of glacial melt water containing a relatively high concentration of dissolved oxygen (O2). It is therefore of interest to investigate the physical and geochemical processes, including naturally-occurring redox reactions, that may control O2 ingress. In this study, the reactive transport code MIN3P is used in combination with 2k factorial analyses to identify the most important parameters controlling oxygen migration and attenuation in fractured crystalline rocks. Scenarios considered are based on simplified conceptual models that include a single vertical fracture, or a fracture zone, contained within a rock matrix that extends from the ground surface to a depth of 500 m. Consistent with field observations, Fe(II)-bearing minerals are present in the fractures (i.e. chlorite) and the rock matrix (biotite and small quantities of pyrite). For the parameter ranges investigated, results indicate that for the single fracture case, the most influential factors controlling dissolved O2 ingress are flow velocity in the fracture, fracture aperture, and the biotite reaction rate in the rock matrix. The most important parameters for the fracture zone simulations are flow velocity in the individual fractures, pO2 in the recharge water, biotite reaction rate, and to a lesser degree the abundance and reactivity of chlorite in the fracture zone, and the fracture zone width. These parameters should therefore receive increased consideration during site characterization, and in the formulation of site-specific models intended to predict O2 behavior in crystalline rocks.  相似文献   
116.
根据国内外研究报道,系统地总结了计算毒理学和化合物环境行为模拟在环境科学领域的研究进展,包括二者的概念、理论、研究方法以及在环境研究中的应用;分析了计算毒理学和化合物环境行为模拟在发展中所面临的挑战,并提出对策;展望了计算毒理学和化合物环境行为模拟在环境研究中的发展前景。  相似文献   
117.
Interpersonal trust is associated with a range of adaptive outcomes, including knowledge sharing. However, to date, our knowledge of antecedents and consequences of employees feeling trusted by supervisors in organizations remains limited. On the basis of a multisource, multiwave field study among 956 employees from 5 Norwegian organizations, we examined the predictive roles of perceived mastery climate and employee felt trust for employees' knowledge sharing. Drawing on the achievement goal theory, we develop and test a model to demonstrate that when employees perceive a mastery climate, they are more likely to feel trusted by their supervisors at both the individual and group levels. Moreover, the relationship between employees' perceptions of a mastery climate and supervisor‐rated knowledge sharing is mediated by perceptions of being trusted by the supervisor. Theoretical contributions and practical implications of our findings are discussed.  相似文献   
118.
Objective: Evaluating the biofidelity of pedestrian finite element models (PFEM) using postmortem human subjects (PMHS) is a challenge because differences in anthropometry between PMHS and PFEM could limit a model's capability to accurately capture cadaveric responses. Geometrical personalization via morphing can modify the PFEM geometry to match the specific PMHS anthropometry, which could alleviate this issue. In this study, the Total Human Model for Safety (THUMS) PFEM (Ver 4.01) was compared to the cadaveric response in vehicle–pedestrian impacts using geometrically personalized models.

Methods: The AM50 THUMS PFEM was used as the baseline model, and 2 morphed PFEM were created to the anthropometric specifications of 2 obese PMHS used in a previous pedestrian impact study with a mid-size sedan. The same measurements as those obtained during the PMHS tests were calculated from the simulations (kinematics, accelerations, strains), and biofidelity metrics based on signals correlation (correlation and analysis, CORA) were established to compare the response of the models to the experiments. Injury outcomes were predicted deterministically (through strain-based threshold) and probabilistically (with injury risk functions) and compared with the injuries reported in the necropsy.

Results: The baseline model could not accurately capture all aspects of the PMHS kinematics, strain, and injury risks, whereas the morphed models reproduced biofidelic response in terms of trajectory (CORA score = 0.927 ± 0.092), velocities (0.975 ± 0.027), accelerations (0.862 ± 0.072), and strains (0.707 ± 0.143). The personalized THUMS models also generally predicted injuries consistent with those identified during posttest autopsy.

Conclusions: The study highlights the need to control for pedestrian anthropometry when validating pedestrian human body models against PMHS data. The information provided in the current study could be useful for improving model biofidelity for vehicle–pedestrian impact scenarios.  相似文献   

119.
Research increasingly highlights cause and effect relationships between urbanization and stream conditions are complex and highly variable across physical and biological regions. Research also demonstrates stormwater runoff is a key causal agent in altering stream conditions in urban settings. More specifically, thermal pollution and high salt levels are two consequences of urbanization and subsequent runoff. This study describes a demonstration model populated with data from a high gradient headwaters stream. The model was designed to explain surface water‐groundwater dynamics related to salinity and thermal pollution. Modeled scenarios show long‐term additive impacts from salt application and suggest reducing flow rates, as stormwater management practices are typically designed to do, have the potential to greatly reduce salt concentrations and simultaneously reduce thermal pollution. This demonstration model offers planners and managers reason to be confident that stormwater management efforts can have positive impacts.  相似文献   
120.
One approach for performing uncertainty assessment in flood inundation modeling is to use an ensemble of models with different conceptualizations, parameters, and initial and boundary conditions that capture the factors contributing to uncertainty. However, the high computational expense of many hydraulic models renders their use impractical for ensemble forecasting. To address this challenge, we developed a rating curve library method for flood inundation forecasting. This method involves pre‐running a hydraulic model using multiple inflows and extracting rating curves, which prescribe a relation between streamflow and stage at various cross sections along a river reach. For a given streamflow, flood stage at each cross section is interpolated from the pre‐computed rating curve library to delineate flood inundation depths and extents at a lower computational cost. In this article, we describe the workflow for our rating curve library method and the Rating Curve based Automatic Flood Forecasting (RCAFF) software that automates this workflow. We also investigate the feasibility of using this method to transform ensemble streamflow forecasts into local, probabilistic flood inundation delineations for the Onion and Shoal Creeks in Austin, Texas. While our results show water surface elevations from RCAFF are comparable to those from the hydraulic models, the ensemble streamflow forecasts used as inputs to RCAFF are the largest source of uncertainty in predicting observed floods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号