首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2814篇
  免费   181篇
  国内免费   211篇
安全科学   389篇
废物处理   40篇
环保管理   1111篇
综合类   650篇
基础理论   449篇
环境理论   3篇
污染及防治   215篇
评价与监测   154篇
社会与环境   100篇
灾害及防治   95篇
  2023年   30篇
  2022年   48篇
  2021年   70篇
  2020年   86篇
  2019年   75篇
  2018年   54篇
  2017年   80篇
  2016年   111篇
  2015年   110篇
  2014年   117篇
  2013年   170篇
  2012年   104篇
  2011年   166篇
  2010年   91篇
  2009年   171篇
  2008年   128篇
  2007年   142篇
  2006年   109篇
  2005年   118篇
  2004年   100篇
  2003年   122篇
  2002年   92篇
  2001年   85篇
  2000年   108篇
  1999年   96篇
  1998年   84篇
  1997年   54篇
  1996年   59篇
  1995年   49篇
  1994年   43篇
  1993年   39篇
  1992年   28篇
  1991年   26篇
  1990年   12篇
  1989年   20篇
  1988年   22篇
  1987年   16篇
  1986年   12篇
  1985年   9篇
  1984年   8篇
  1983年   7篇
  1982年   17篇
  1981年   13篇
  1980年   16篇
  1979年   21篇
  1978年   18篇
  1977年   7篇
  1972年   11篇
  1971年   9篇
  1970年   5篇
排序方式: 共有3206条查询结果,搜索用时 531 毫秒
71.
ABSTRACT: Surface and subsurface drainage make crop production economically viable in much of southern Minnesota because drainage allows timely field operations and protects field crops from extended periods of flooded soil conditions. However, subsurface drainage has been shown to increase nitrate/nitrogen losses to receiving waters. When engaging in drainage activities, farmers are increasingly being asked to consider, apart from the economic profit, the environmental impact of drainage. The Agricultural Drainage and Pesticide Transport model (ADAPT) was used in this study to evaluate the impact of subsurface drainage design on the soil water balance over a two‐year period during which observed drainage discharge data were available. Twelve modeling scenarios incorporated four drainage coefficients (DC), 0.64 cm/d, 0.95 cm/d, 1.27 cm/d, and 1.91 cm/d, and three drain depths, 0.84 m, 1.15 m, and 1.45 m. The baseline condition corresponded to the drainage system specifications at the field site: a drain depth and spacing of 1.45 m and 28 m, respectively (DC of 0.64 cm/d). The results of the two‐year simulation suggested that for a given drainage coefficient, soils with the shallower drains (but equal DC) generally have less subsurface drainage and can produce more runoff (but reduced total discharge) and evapotranspiration. The results also suggested that it may be possible to design for both water/nitrate/nitrogen reduction and crop water needs.  相似文献   
72.
ABSTRACT: Intensive cropping systems based on mechanical movement of soil have induced land degradation in most agricultural areas due to soil erosion and soil fertility losses. Thus, farmers have been increasing fertilization rates to maintain an economically competitive crop yield. This practice has resulted in water quality degradation and lake eutrophication in many agricultural watersheds. Research was conducted in the Patzcuaro watershed in central Mexico to develop appropriate technology that prevents nonpoint source pollution from fertilizers. Organic matter (OM) and nitrogen (N) losses in runoff and nitrate (NO3‐N) percolation in Andisols with corn under conventional till (CT) and no‐till (NT) treatments using variable percentages of crop residue as soil cover were investigated for steep‐slope agriculture. USLE type runoff plots were used to collect water runoff, while suction tubes with porous caps at 30, 60, and 90 cm depth were used to sample soil water solutes for NO3‐N analyses. Results indicated a significant reduction of N and OM losses in runoff as residue cover increased in the NT treatments. Inorganic N in runoff was 25 kg/ha for NT without residue cover (NT‐0) and 6 kg/ha for the NT with 100 percent residue cover (NT‐100). Organic matter losses in runoff were 157 and 24 kg/ha for the NT‐0 and NT‐100 treatments, respectively. Nitrate‐N percolation was evident in CT and NT with 100 percent residue cover (NT‐100). However, NT‐100 had higher NO3‐N concentration at the root zone, suggesting the possibility of reducing fertilization rates with the use of NT treatments.  相似文献   
73.
ABSTRACT: Surface water impairment by fecal coliform bacteria is a water quality issue of national scope and importance. In Virginia, more than 400 stream and river segments are on the Commonwealth's 2002 303(d) list because of fecal coliform impairment. Total maximum daily loads (TMDLs) will be developed for most of these listed streams and rivers. Information regarding the major fecal coliform sources that impair surface water quality would enhance the development of effective watershed models and improve TMDLs. Bacterial source tracking (BST) is a recently developed technology for identifying the sources of fecal coliform bacteria and it may be helpful in generating improved TMDLs. Bacterial source tracking was performed, watershed models were developed, and TMDLs were prepared for three streams (Accotink Creek, Christians Creek, and Blacks Run) on Virginia's 303(d) list of impaired waters. Quality assurance of the BST work suggests that these data adequately describe the bacteria sources that are impairing these streams. Initial comparison of simulated bacterial sources with the observed BST data indicated that the fecal coliform sources were represented inaccurately in the initial model simulation. Revised model simulations (based on BST data) appeared to provide a better representation of the sources of fecal coliform bacteria in these three streams. The coupled approach of incorporating BST data into the fecal coliform transport model appears to reduce model uncertainty and should result in an improved TMDL.  相似文献   
74.
ABSTRACT: Recent research that couples climate change scenarios based on general circulation models (GCM) with Great Lakes hydrologic models has indicated that average water levels are projected to decline in the future. This paper outlines a methodology to assess the potential impact of declining water levels on Great Lakes waterfront communities, using the Lake Huron shoreline at Goderich, Ontario, as an example. The methodology utilizes a geographic information system (GIS) to combine topographic and bathymetric datasets. A digital elevation surface is used to model projected shoreline change for 2050 using water level scenarios. An arbitrary scenario, based on a 1 m decline from February 2001 lake levels, is also modeled. By creating a series of shoreline scenarios, a range of impact and cost scenarios are generated for the Goderich Harbor and adjacent marinas. Additional harbor and marina dredging could cost as much as CDN $7.6 million. Lake freighters may experience a 30 percent loss in vessel capacity. The methodology is used to provide initial estimates of the potential impacts of climate change that can be readily updated as more robust climate change scenarios become available and is adaptable for use in other Great Lakes coastal communities.  相似文献   
75.
The applications of chlorine have been broadly used in many industrial products, such as bleaching agents, synthetic rubbers, plastics, disinfectants, iron chlorides, fire refractory materials, insecticides, and anti-freezers, etc. According to the Taiwan Environmental Protection Administration (TEPA), more than 30 thousand tons were used in the year 2000. In addition, there were more than 12 reported incidents from 2000 to 2003—mostly on using chlorine as disinfectants (five) and as process agents (four).

This study investigated 15 chlorine operation plants in central Taiwan. These chlorine usages included bleaching agents, disinfectants, iron chloride, synthesizing rubber plastics, and others. Thirteen plants were located in the industrial parks and two were in or near residential zones. The consequence analysis were used three different methods to analyze the worst-case scenarios (WCSs) and alternative release case scenarios (ACSs) in order to compare impact zones for applying various active and passive mitigation systems, such as confined space, scrubber, water-spray, and so no. For two plants in or near residential zones, multi-layers mitigation systems and operation limits should be implemented in order to enforce more stringent protection measures. However, there was no specific regulation for chlorine plants operated at different locations, such as industrial parks or residential zones. In order to reduce chemical accidents and their impacts on public safety, our results suggest that source mitigation/management and warning systems should be adopted simultaneously.  相似文献   

76.
The East Usambara Mountains, recognized as one of the 25 most important biodiversity hot spots in the world, have a high degree of species diversity and endemism that is threatened by increasing human pressure on resources. Traditional slash and burn cultivation in the area is no longer sustainable. However, it is possible to maintain land productivity, decrease land degradation, and improve rural people’s livelihood by ameliorating cultivation methods. Improved agroforestry seems to be a very convincing and suitable method for buffer zones of conservation areas. Farmers could receive a reasonable net income from their farm with little investment in terms of time, capital, and labor. By increasing the diversity and production of already existing cultivations, the pressure on natural forests can be diminished. The present study shows a significant gap between traditional cultivation methods and improved agroforestry systems in socio-economic terms. Improved agroforestry systems provide approximately double income per capita in comparison to traditional methods. More intensified cash crop cultivation in the highlands of the East Usambara also results in double income compared to that in the lowlands. However, people are sensitive to risks of changing farming practices. Encouraging farmers to apply better land management and practice sustainable cultivation of cash crops in combination with multipurpose trees would be relevant in improving their economic situation in the relatively short term. The markets of most cash crops are already available. Improved agroforestry methods could ameliorate the living conditions of the local population and protect the natural reserves from human disturbance.  相似文献   
77.
Effective watershed management requires an accurate assessment of the pollutant loads from the associated point and nonpoint sources. The importance of wet weather flow (WWF) pollutant loads is well known, but in semi‐arid regions where urbanization is significant the pollutant load in dry weather flow (DWF) may also be important. This research compares the relative contributions of potential contaminants discharged in DWF and WWF from the Ballona Creek Watershed in Los Angeles, California. Models to predict DWF and WWF loads of total suspended solids, biochemical oxygen demand, nitrate‐nitrogen, nitrite‐nitrogen, ammonia‐nitrogen, total Kjeldahl nitrogen, and total phosphorus from the Ballona Creek Watershed for six water years dating from 1991 to 1996 were developed. The contaminants studied were selected based on data availability and their potential importance in the degradation of Ballona Creek and Santa Monica Bay beneficial uses. Wet weather flow was found to contribute approximately 75 percent to 90 percent of the total annual flow volume discharged by the Ballona Creek Watershed. Pollutant loads are also predominantly due to WWF, but during the dry season, DWF is a more significant contributor. Wet weather flow accounts for 67 to 98 percent of the annual load of the constituents studied. During the dry season, however, the portion attributable to DWF increases to greater than 40 percent for all constituents except biochemical oxygen demand and total suspended solids. When individual catchments within the watershed are considered, the DWF pollutant load from the largest catchment is similar to the WWF pollutant load in two other major catchments. This research indicates WWF is the most significant source of nonpoint source pollution load on an annual basis, but management of the effects of the nonpoint source pollutant load should consider the seasonal importance of DWF.  相似文献   
78.
The development, testing, and application of a probabilistic model framework for the light attenuation coefficient for downwelling irradiance (Kd) and Secchi disc transparency (SD) that resolves the effects of several light attenuating constituents, including phytoplankton and nonliving particles (tripton), is documented. The model is consistent with optical theory, partitioning the magnitudes of the light attenuating processes of absorption and scattering according to the contributions of attenuating constituents as simple summations. The probabilistic framework accommodates variations in the character and concentrations of these constituents and ambient conditions during measurements, and recognizes a linear relationship between the magnitudes of absorption and scattering by tripton. The model is tested and applied for a 21 km reach of the Seneca River, New York, that features optical gradients caused by an intervening hypereutrophic lake and dam, and a severe infestation of the exotic zebra mussel. The model is applied to resolve the roles of phytoplankton and tripton in regulating measured longitudinal patterns of SD along the study reach of the river and increases in SD since the zebra mussel invasion, and to predict decreases in Kd since the invasion.  相似文献   
79.
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr).  相似文献   
80.
Emission inventory is one of the required inputs to air quality models. To assist in the urban and regional modeling efforts, United States Environmental Protection Agency (EPA) has compiled a National Emission Inventory (NEI) for criterion pollutants, and the precursors of ozone and particulate matter (PM). In December 2002, EPA released the 1999 NEI estimates (NEI99), which represent the most recent national emission data. However, the data sets are not in model-ready format for air quality simulations. This present work converts the NEI99 Final Version 2 data sets into Inventory Data Analyzer (IDA) format and processes the data using the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system to generate a gridded emission inventory in a domain covering the west Gulf Coast Region, USA. The spatial and diurnal emission characteristics of the gridded emission inventories are then assessed and compared with those of the National Emission Trend 1996 (NET96). The NEI99 database contains more complete emission records in both area and point sources. It is also found that NEI99 data exhibit greater emissions with respect to point and mobile sources but smaller emissions with respect to area sources when compared to the corresponding gridded NET96 data in the same study domain. The most distinct differences between the NEI99 and NET96 databases are CO emission of mobile sources, SO2 emissions of point sources, and VOC/PM/NH3/NOx emissions of area and non-road sources. The gridded NEI99 data show low VOC/NOx ratios (<2-5) in the urban areas of the study domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号