首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   2篇
  国内免费   13篇
安全科学   2篇
废物处理   2篇
环保管理   7篇
综合类   36篇
基础理论   8篇
污染及防治   43篇
评价与监测   6篇
社会与环境   2篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   9篇
  2013年   9篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   8篇
  2008年   8篇
  2007年   11篇
  2006年   6篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
21.
Previous work has shown that arsenic can accumulate in drinking water distribution system (DWDS) solids (Lytle et~al., 2004) when arsenic is present in the water. The release of arsenic back into the water through particulate transport and/or chemical release (e.g. desorption, dissolution) could result in elevated arsenic levels at the consumers' tap. The primary objective of this work was to examine the impact of pH and orthophosphate on the chemical release (i.e. desorption) of arsenic from nine DWDS solids collected from utilities located in the Midwest. Arsenic release comparisons were based on the examination of arsenic and other water quality parameters in leach water after contact with the solids over the course of 168~hours. Results showed that arsenic was released from solids and suggested that arsenic release was a result of desorption rather than dissolution. Arsenic release generally increased with increasing initial arsenic concentration in the solid and increasing pH levels (in the test range of 7 to 9). Finally, orthophosphate (3 and 5 mg PO4/L) increased arsenic release at all pH values examined. Based on the study results, utilities with measurable levels of arsenic present in their water should be aware that some water quality changes can cause arsenic release in the DWDS potentially resulting in elevated levels at the consumer's tap.  相似文献   
22.
阴离子交换纤维吸附与解吸亚硝酸根的研究   总被引:4,自引:0,他引:4  
本文对聚乙烯醇阴离子交换纤维(Poly vinylalcohol anion exchange fiber)吸附与解吸亚硝酸根分别作了动态及静态试验。结果表明,NO_2~-在PVAF上吸附与解吸速度快、再生容易、使用寿命长,吸附特征符合Langmuir吸附等温式,饱和吸附量为1.7m mol/g。其吸附率与温度、NO_2~-浓度、滤速、pH值、共存阴离子种类有关。洗脱率与洗脱剂种类、浓度有关。  相似文献   
23.
原油在土壤中的吸附和解吸研究   总被引:10,自引:0,他引:10  
用振荡平衡法研究了原油在土壤中的吸附和解吸行为,测得了吸附常数,给出了吸附等温线。结果表明,Linear吸附关系可较好地描述原油在土壤中的吸附状况;土壤有机质含量影响原油的吸附量;其解吸行为则明显受到溶液pH的影响,表面活性剂的加入有助于原油解吸。  相似文献   
24.
The distribution coefficients (Kd) and desorption rates of 137Cs and 241Am radionuclides in bottom sediments at different locations in the Black Sea were studied under laboratory conditions. The Kd values were found to be 500 for 137Cs and 3800 for 241Am at the steady state and described exponential curves. Rapid uptake of the radionuclides occurred during the initial period and little accumulation happened after four days. The desorption rates for 137Cs in different bottom sediments were best described by a three-component exponential model. The desorption half-times of 137Cs ranged from 26 to 50 d at the slow components. However, the desorption rate of 241Am described one component for all sediment samples and desorption half-time was found to be 75 d. In general, the results showed that the 241Am radionuclide is more effectively transferred to bottom sediment and has longer turnover time than 137Cs under Black Sea conditions.  相似文献   
25.
Ran Y  Xiao B  Fu J  Sheng G 《Chemosphere》2003,50(10):1365-1376
Sorption and desorption hysteresis of 1,2-dichlorobenzene, 1,3,5-trichlorobenzene, naphthalene, and phenanthrene were investigated for the Borden aquifer material with total organic carbon of 0.021% and the isolated natural organic matter (NOM). The isolated NOM is a kerogen type of organic matter with relatively low maturation degree and contained many different types of organic matters including vitrinite particles. The modified Freundlich sorption capacities (logKf and logKfoc) are very close for the sorption of the four solutes by the isolated NOM and the original sand, respectively. Isotherm non-linearity (n value) and hysteric behaviors are related to solute molecular properties (e.g. Kow and molecular size). Kerogen encapsulated by inorganic matrices in the original aquifer may not be accessed fully by solutes. The larger the hydrophobic organic chemical (HOC) (hydrophobic organic contaminant) molecule is, the lower accessibility of the HOC to kerogen. This study disputes widely held hypothesis that sorption to mineral surfaces may play a major role in the overall sorption by low TOC (e.g. 0.1% by mass) geomaterials such as Borden sand. It also demonstrates the importance of the condensed NOM domain, even at very low contents, in the sorption and desorption hysteresis of HOCs in groundwater systems.  相似文献   
26.

Sorption of the estrogens estrone (E1), 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) on four soils was examined using batch equilibrium experiments with initial estrogen concentrations ranging from 10 to 1000 ng mL?1. At all concentrations, >85% of the three estrogens sorbed rapidly to a sandy soil. E1 sorbed more strongly to soil than E2 or EE2. Partial oxidation of E2 to E1 was observed in the presence of soils. Autoclaving was more effective at reducing this conversion than inhibition with sodium azide or mercuric chloride, and had little effect on sorption, relative to the chemical microbial inhibitors. Sorption of EE2 was greater for fine-textured than coarse-textured soils, but greater than 90% of EE2 sorbed onto all four soils. The greatest degree of desorption of estrogens from the sandy soil occurred with the lowest initial concentration of 10 ng mL?1 and reached levels ≥80% for E1 and E2. Desorption of EE2 was greater in coarser textured soils than finer-textured soils. Again, relative desorption from all soils was greatest with low initial concentrations. Therefore, at environmentally relevant concentrations, estrogens quickly sorb to soils, and soils have a large capacity to bind estrogens, but these endocrine-disrupting compounds can become easily desorbed and released into the aqueous phase.  相似文献   
27.
巯基化膨润土对As~(3+)的吸附解吸性能研究   总被引:1,自引:0,他引:1  
水体及土壤砷污染已引起社会的广泛关注。本研究从7种改性膨润土中筛选出1种对As3+吸附能力较强的材料,即巯基化膨润土。其对As3+的吸附解吸研究显示,吸附在120min后达到平衡;在材料投加量达到0.1 g后,As3+的吸附率基本不变;巯基化膨润土对As3+的吸附受p H、温度及离子强度影响较小,其对As3+的解吸受pH及离子强度影响也较小,且解吸率均小于1%。巯基化材料对As3+的饱和吸附量达到了1.18 mg/g,比钙基膨润土提高了12倍以上;其比表面积比钙基膨润土提高了6倍以上。因此,巯基化膨润土是一种较理想的As 3+吸附材料。  相似文献   
28.
为了解决瓦斯排放孔半径测定过程中由于方法选择和操作等原因而出现的测定结果不够准确,以及由此而导致的空白带出现问题,通过现场试验,采用钻屑解吸指标法测定的方法,通过对测定结果进行综合分析、修正,确定安顺煤矿Φ42 mm直径的排放钻孔有效作用半径为R0.25 m,Φ90 mm直径的排放钻孔有效作用半径为R0.55 m,经实践证明是准确和可靠的,排放钻孔措施在实施过程中有效地避免了空白带的出现。  相似文献   
29.
对气相色谱法测定空气中挥发性卤代烃的前处理过程进行了研究,通过试验验证,确定了样品的保存时间、解吸条件以及解吸液的保存时间,优化了分析方法,使其适用于日常环境监测工作。  相似文献   
30.
Yu Z  Huang W  Song J  Qian Y  Peng P 《Chemosphere》2006,65(11):2493-2501
The objective of this study was to quantify sorption properties for kerogen/black carbon (BC)-bearing sediments. Single-solute sorption isotherms were measured for five pristine marine sediments using phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,4-dichlorobenzene as the sorbates. The results showed that the sorption isotherms were nonlinear and that the organic carbon normalized single point KOC values were comparable to those reported in the literature for the purified keorgen and BC, but are much higher than the data reported for HA and kerogen/BC-containing terrestrial soils and sediments. It is likely that koergen and BC associated with these pristine marine sediments may not be encapsulated with humic acids or Fe and Mn oxides and hydroxides as often do in terrestrial soils and sediments. As a result, they may be fully accessible to sorbing molecules, exhibiting higher sorption capacities. The study suggests that competition from background HOCs and reduced accessibility when kerogen and BC are associated with terrestrial sediments may dramatically increase variability of sorption reactivities of geosorbents. Such variability may lead to large uncertainties in the prediction of sorption from the contents of kerogen and/or BC along with TOC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号