首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   108篇
  国内免费   455篇
安全科学   125篇
废物处理   115篇
环保管理   83篇
综合类   582篇
基础理论   74篇
污染及防治   389篇
评价与监测   13篇
社会与环境   5篇
灾害及防治   4篇
  2024年   1篇
  2023年   10篇
  2022年   36篇
  2021年   34篇
  2020年   28篇
  2019年   33篇
  2018年   29篇
  2017年   58篇
  2016年   75篇
  2015年   75篇
  2014年   77篇
  2013年   82篇
  2012年   109篇
  2011年   61篇
  2010年   65篇
  2009年   73篇
  2008年   53篇
  2007年   72篇
  2006年   86篇
  2005年   57篇
  2004年   48篇
  2003年   44篇
  2002年   32篇
  2001年   30篇
  2000年   26篇
  1999年   17篇
  1998年   25篇
  1997年   17篇
  1996年   5篇
  1995年   10篇
  1994年   6篇
  1993年   9篇
  1992年   1篇
  1991年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
排序方式: 共有1390条查询结果,搜索用时 15 毫秒
1.
流化床煤气炉炉内脱硫分析研究   总被引:2,自引:0,他引:2  
硫在煤中以无机硫和有机硫的形式存在,在煤的气化过程中主要形成硫化氢,温度,气体环境和加热率都对煤所含硫的释放有影响。非催化气-固反应是清除热烟气中硫化氢的一种方法,常用脱硫有碱土金属合物,重金属氧化物,混合金属氧化物等。氧化锌及混合金属氧化物脱除硫化氢很有效但受温度限制钙其脱硫剂脱硫效率高,便宜,但有些涉及石灰石应用的总是值得注意。  相似文献   
2.
从废感光胶片中回收银   总被引:2,自引:0,他引:2  
研究了以Fe3 -乙二胺四乙酸二钠-N a2S2O3体系为浸取剂从废感光胶片中回收银的方法,考察了浸出银的最佳工艺条件。实验表明,当浸取剂中FeC l3.6H2O质量浓度为35g/L、N a2S2O3.5H2O质量浓度为150g/L、pH为7、固液质量比为3∶10时,浸取剂可重复使用6次,胶片上银的浸出率可达99%以上;浸取液中的银采用硼氢化钠还原回收,粗银粉配以熔剂高温熔炼可得到纯度达99.78%的银,银回收率达96.88%,回收银后的浸取液可循环使用。  相似文献   
3.
新疆融雪措施对环境的影响及其防治对策   总被引:4,自引:0,他引:4  
随着国民经济的飞速发展,促进和带动了城市化发展,在我国北方寒冷地区城市中,积雪对城市发展和交通安全运营的制约因素越来越受到各界人士的关注。有关部门引进并使用融雪剂去除冰雪,融雪剂在提高清除积雪效率的同时,也给城市的基础设施和生态环境带来潜在危害。为了正确合理的使用融雪剂,了解融雪剂的特性和它的融雪机理是十分必要的,在此基础上提出减轻危害的对策,为今后正确使用融雪剂提供参考依据。  相似文献   
4.
树脂吸附-Fenton试剂氧化法处理水杨醛生产废水   总被引:1,自引:0,他引:1  
采用树脂吸附-Fenton试剂氧化法处理水杨醛生产废水。XF-01树脂和XF-02树脂静态吸附水杨醛生产废水时,COD去除率均在85%以上,挥发酚去除率均高于90%。XF-02树脂对水杨醛生产废水的处理效果更佳。动态吸附随废水流量增大,吸附出水的COD和挥发酚质量浓度均增加。适宜的废水流量为15BV,树脂的最佳脱附温度为80℃。在连续4批的吸附-脱附实验中,吸附出水的平均COD约为1200mg/L,平均挥发酚质量浓度小于10mg/L。在Fenton试剂氧化中,铁屑和铁粉的催化效果差别很小,都好于FeSO4·7H2O。以铁屑为催化剂、H2O2溶液加入量为1%时,氧化出水的COD小于150mg/L,挥发酚质量浓度小于0.5mg/L。  相似文献   
5.
为了研究Fenton试剂协同TiO2光催化降解三氯乙酸(TCAA)的反应及其协同机理,在自制的光催化反应装置中分别考察了Fenton、UV/TiO2及Fenton/ UV/TiO2 3个反应对TCAA的降解情况。研究结果表明,在TCAA初始浓度为2.0 mg/L,TiO2用量为1.0 g/L,紫外辐射光源为15 W(λmain=254 nm)的实验条件下,Fenton试剂协同TiO2光催化降解TCAA反应在pH 3~7范围内均有较高的降解率;TCAA 在Fenton、UV/TiO2及Fenton/ UV/TiO2 3个反应中的一级反应速率常数分别为0.0009、0.0131和0.0456 min-1;Fenton试剂与TiO2光催化反应间存在较明显的协同效应,其协同机理主要体现在两个方面:一是紫外光激发Fe(OH)2+和H2O2分解产生更多的·OH,二是Fenton试剂中部分被氧化成的Fe3+可与TiO2表面的光生电子结合被还原为Fe2+,抑制了光生电子与空穴的复合,从而提高了TiO2光催化降解TCAA的效率。  相似文献   
6.
为了提高工业聚集型村镇复合废水处理效率,对微波-均相Fenton技术进行了研究。基于Box-Behnken响应曲面法,重点考察了初始pH值、H2O2/Fe2+摩尔比、H2O2投加量、微波功率及微波辐射时间的单独及交互作用;建立以COD去除率为响应值的二次响应曲面模型并采用方差分析进行验证。结果表明,影响因子显著性排序为:初始pH值 > H2O2投加量 > 微波辐射功率 > H2O2/Fe2+摩尔比 > 微波辐射时间;其中初始pH和H2O2投加量之间交互作用显著;所建数学模型回归性较好,最优组合条件为:初始pH值3.43,H2O2投加量19.2 mmol·L-1,H2O2/Fe2+摩尔比39.42,微波辐射功率597.55 W,微波辐射时间5.12 min,该条件下COD实际去除率为95.3%,与模型预测结果相比偏差为4.7%。采用微波-均相Fenton法深度处理工业聚集型村镇复合废水,出水COD值完全满足《污水综合排放标准》(GB 8978-1996)一级排放标准COD≤100 mg·L-1。  相似文献   
7.
为减少电解锰渣中主要污染物锰离子和氨氮含量,降低其对环境的污染,采用水洗联合固化法处理电解锰渣,通过改变水渣比、洗涤次数、搅拌时间,固化剂添加比例,观察锰渣水洗及固化过程中锰离子、氨氮的质量浓度变化并确定最佳水洗固化条件。研究表明,水渣比为2,洗涤2次,搅拌时间30 min为最佳水洗条件,此时锰渣浸出液Mn2+、NH3-N的质量浓度分别为106.65和40.05 mg·L−1;向水洗后锰渣中添加0.15%的Na3PO4、1.00%的生石灰,0.75%的水泥和0.50%的粉煤灰为最佳固化剂添加比例,此时锰渣浸出液Mn2+、NH3-N的质量浓度分别为0.141和1.260 μg·L−1,满足污水综合排放标准。本研究结果表明,对水洗后的锰渣进行固化处理,可以有效降低浸出液中Mn2+和NH3-N质量浓度,可为锰渣无害化处理提供参考。  相似文献   
8.
温和预氧化提高后续生物修复石油污染土壤   总被引:3,自引:0,他引:3  
徐金兰  王慧芳  王荣  章秋菊  王杰 《环境科学》2019,40(11):5124-5132
为得到一种能促进后期生物阶段高效降解石油烃(TPH)的温和Fenton预氧化方式,本文考察了不同Fenton预氧化过程中羟基自由基(·OH)特征、后续生物修复过程中营养消耗、土著菌活性(CO_2)以及TPH去除量的差异,结果表明,温和Fenton预氧化组(·OH存在时间:73 h;双氧水浓度:225 mmol·L~(-1))中·OH存在时间短H_2O_2用量少,残余细菌活性高,后续对石油的生物降解率高,不加菌就能够达到与加菌相同的修复效果(TPH去除率38%左右).且在不加菌的条件下,后期生物阶段TPH去除率,温和预氧化组(38%)要高于普通预氧化组(15. 32%~33. 15%).进一步分析各链烃的去除效果,发现在后续生物修复阶段,温和预氧化组能减少对链烃组分(C17~C21)的抑制;而对比各组的土著菌活性,发现温和预氧化可以适当刺激土著微生物生长并提高其活性,这些因素均有利于TPH的去除.温和预氧化在后期生物修复阶段对TPH的去除不加菌就能够达到与加菌相同的处理效果,是一种低成本可行的修复方式.  相似文献   
9.
灾害保险是筹措防灾救灾资金的重要手段.本文运用委托-代理理论建立了自然灾害的保险模型,对自然灾害的最优保险合同和保险费率进行了研究,为开展自然灾害的保险业务提供了理论依据.  相似文献   
10.
利用天然混合羧酸与聚氧丙烯醚以适当比例混合,以乙醇为溶剂制得新型集油剂,燃点88.7℃,对于柴油、原油膜有优良的集油性能。QS=1集油剂在55cm长的水槽中,使水面柴油膜收缩距离达44.0~50.8cm,维持时间大于6h;QS-2集油剂使原油膜面积收缩率74.3%~76.5%,维持时间大于16h。该集油剂在0~4000mg/dm^3浓度下,不影响小球藻和小新月菱形藻生长。该集油剂在4级海况条件下仍  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号