全文获取类型
收费全文 | 291篇 |
免费 | 33篇 |
国内免费 | 145篇 |
专业分类
安全科学 | 18篇 |
废物处理 | 54篇 |
环保管理 | 21篇 |
综合类 | 202篇 |
基础理论 | 30篇 |
污染及防治 | 120篇 |
评价与监测 | 24篇 |
出版年
2023年 | 2篇 |
2022年 | 5篇 |
2021年 | 7篇 |
2020年 | 8篇 |
2019年 | 12篇 |
2018年 | 8篇 |
2017年 | 19篇 |
2016年 | 21篇 |
2015年 | 25篇 |
2014年 | 17篇 |
2013年 | 29篇 |
2012年 | 36篇 |
2011年 | 17篇 |
2010年 | 28篇 |
2009年 | 24篇 |
2008年 | 18篇 |
2007年 | 33篇 |
2006年 | 42篇 |
2005年 | 20篇 |
2004年 | 16篇 |
2003年 | 19篇 |
2002年 | 11篇 |
2001年 | 14篇 |
2000年 | 4篇 |
1999年 | 11篇 |
1998年 | 3篇 |
1997年 | 6篇 |
1996年 | 6篇 |
1995年 | 2篇 |
1994年 | 5篇 |
1991年 | 1篇 |
排序方式: 共有469条查询结果,搜索用时 15 毫秒
71.
分析HACH氨氮自动监测分析仪所用进口试剂配方中氧化剂、显色剂、催化剂、掩蔽剂、缓冲液的组分、试剂用量、反应机理、吸收光谱、酸碱度、发色时间和温度、显色产物的稳定性、灵敏度、干扰及消除,以及存放条件的差异,自行研发国产配方,并将该国产配方试剂与进口试剂做试验比对,结果 2种试剂的效能无显著差异。 相似文献
72.
从数据比对、硬件维护两个方面探讨岛津TNP-4110在线仪的日常维护问题。通过分析各种干扰因素来查找造成数据比对差异的原因并提出相应解决措施。在仪器日常维护上设立不同周期保养计划、共享设备维护经验,结合实践制定了合适的检修流程图。 相似文献
73.
纳氏试剂光度法测定水体中氨氮常见问题与解决办法 总被引:2,自引:0,他引:2
针对在实际工作中用纳氏试剂光度法测定水体中氨氮存在的一些问题,在参考相关研究资料的基础上,并根据工作经验,对纳氏试剂光度法测定水体中氨氮常见问题进行了探讨与总结,以期更好的指导实际工作。 相似文献
74.
纳氏试剂比色法测定水体中氨氮影响因素的探讨 总被引:5,自引:1,他引:5
对纳氏试剂比色法测定水中氨氮的条件进行了优化,根据实际分析工作中的经验,对实验中出现的常见问题和解决办法进行了总结. 相似文献
75.
采用强化混凝和高级氧化法对制药废水生化出水进行深度处理,比较了不同混凝剂、不同氧化方法(包括Na2S2O8氧化、电化学氧化、Fenton/类Fenton氧化)的处理效果。实验结果表明:经聚合硫酸铁与聚丙烯酰胺强化混凝处理后,废水的COD去除率达18.5%;强化混凝与不同氧化方法联用均可使废水脱色至无色,COD去除率达70.1%~92.4%。强化混凝—电化学氧化组合工艺的出水COD为27.1 mg/L,达到GB 8978—1996《污水综合排放标准》一级标准限值要求,且成本较低,适于实际应用。 相似文献
76.
77.
采用大孔树脂吸附—Fenton试剂氧化法预处理含邻苯二甲酸二异丁酯(DIBP)废水。大孔树脂吸附工段的最佳实验条件为:以树脂NDA88为吸附剂,废水pH为2。NDA88经过10批次的连续使用,COD去除率基本稳定在58%左右,脱附率可达96%以上,吸附后废水COD为12 000 mg/L左右。Fenton试剂氧化工段的最佳实验条件为:H2O2加入量70 mL/L,n(H2O2):n(Fe2+)=4,废水pH 4。在此最佳条件下进行实验,Fenton试剂氧化工段COD去除率达65%,处理后废水COD为4 200 mg/L。 相似文献
78.
US/Fenton试剂协同处理焦化废水的研究 总被引:2,自引:0,他引:2
采用US (超声波)协同Fenton试剂氧化法处理焦化废水,考察了H2O2投加量、Fe2 投加量、废水的pH、反应时间和超声波功率对处理效果的影响,确定了最佳工艺条件.结果表明,在H2O2投加量7.0 g/L;Fe2 投加量500 mg/L;pH=3.0; 反应时间 40 min; 超声波功率 600 W 的条件下,COD、NH3-N、CN-和色度的去除率分别达95.8%、71.3%、69.5%和75.2%,出水COD降至41.0 mg/L.在相同条件下,US/Fenton试剂协同法的处理效率比单独Fenton试剂氧化法的处理效率提高了约20%,且反应时间显著缩短. 相似文献
79.
采用Fenton试剂氧化法处理分散橙、分散紫和分散蓝3种染料结晶废母液。研究了H2O2加入量、n(H2O2)#x02236;n(Fe2+)和废母液pH对COD去除率或TOC去除率的影响。对TOC去除反应分段进行了动力学方程拟合,并探讨了反应机理。实验得到的分散橙、分散紫和分散蓝的废母液处理工艺条件:H2O2加入量分别为264.4,352.9,441.2mmol/L;n(H2O2)#x02236;n(Fe2+)分别为20,10,20;废母液pH=3。3种废母液在0~20min和20~120min两个阶段的反应与二级动力学拟合方程的相关性最好。3种废母液经Fenton试剂氧化处理后,部分有机物降解为小分子有机酸,部分有机物完全矿化。 相似文献
80.
Degradation of azo dyes in water by Electro-Fenton process 总被引:19,自引:0,他引:19
Elodie?Guivarch Stephane?Trevin Claude?Lahitte Mehmet?A.?OturanEmail author 《Environmental Chemistry Letters》2003,1(1):38-44
The degradation of the azo dyes azobenzene, p-methyl red and methyl orange in aqueous solution at room temperature has been studied by an advanced electrochemical oxidation
process (AEOPs) under potential-controlled electrolysis conditions, using a Pt anode and a carbon felt cathode. The electrochemical
production of Fenton's reagent (H2O2, Fe2+) allows a controlled in situ generation of hydroxyl radicals (·OH) by simultaneous reduction of dioxygen and ferrous ions on the carbon felt electrode. In turn, hydroxyl radicals react
with azo dyes, thus leading to their mineralization into CO2 and H2O. The chemical composition of the azo dyes and their degradation products during electrolysis were monitored by high performance
liquid chromatography (HPLC). The following degradation products were identified: hydroquinone, 1,4-benzoquinone, pyrocatechol,
4-nitrocatechol, 1,3,5-trihydroxynitrobenzene and p-nitrophenol. Degradation of the initial azo dyes was assessed by the measurement of the chemical oxygen demand (COD). Kinetic
analysis of these data showed a pseudo-first order degradation reaction for all azo dyes. A pathway of degradation of azo
dyes is proposed. Specifically, the degradation of dyes and intermediates proceeds by oxidation of azo bonds and aromatic
ring by hydroxyl radicals. The results display the efficiency of the Electro-Fenton process to degrade organic matter.
Electronic Publication 相似文献