首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   9篇
  国内免费   21篇
安全科学   11篇
废物处理   33篇
环保管理   11篇
综合类   51篇
基础理论   7篇
污染及防治   9篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2015年   5篇
  2014年   15篇
  2013年   7篇
  2012年   16篇
  2011年   6篇
  2010年   2篇
  2009年   7篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   8篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有122条查询结果,搜索用时 265 毫秒
21.
本文把水分循环与辐射能量转换两个功能过程结合起来,研究蒙古栎林生态系统中的辐射能量与水分的关系。结果表明,森林作用层与林地作用层由于获得不同待征的辐射能量,导致水分交换的数量与方向不同。约74.5%的净辐射用于森林的水分蒸发散,而蒸发散又占降雨量77.45%。可见,辐射能量的大部分用于水分循环。本文还研究了辐射能量对融雪过程的影响,发现针阔混交林在冬季由于具有获得适度辐射能量的特点,使得它是一种较理想的融雪径流产流模式,为合理经营森林提供了依据。  相似文献   
22.
为了研究融雪剂对道路绿化植物的影响,以大叶黄杨(Euonymus japonicus Thunb)为研究材料,研究了其在3种融雪剂(JLR-01、LBR-4、芦笛一号)不同施用量影响下的生长量和生理特性。结果表明:随着融雪剂LBR-4和芦笛一号的施用量的增大,大叶黄杨叶片的相对生长量和株高相对生长量、光合速率(Pn)、水分利用效率(WUE)、蒸腾速率(Tr)和气孔导度(Gs)随之减小,而低施用量的融雪剂JLR-01对大叶黄杨生长量、Pn、WUE和Tr有促进作用。随着融雪剂作用时间的延长,3种融雪剂的Pn和WUE也随之减小,Tr则是先减小后有所增大。当融雪剂施用量较小和胁迫时间较短时,Pn下降是因为气孔关闭;而当施用量较大和胁迫时间较长时,Pn下降是因为叶肉同化能力下降;3种融雪剂对大叶黄杨的胁迫程度由大到小的次序为:芦笛一号〉LBR-4〉JLR-01;大叶黄杨对3种融雪剂施用量的忍耐阈值在80 g.m-2左右,大叶黄杨对施用LBR-4和芦笛一号的耐受时间阈值大约为3周,对施用JLR-01的耐受时间阈值为3周以上。  相似文献   
23.
This paper mainly investigated the physical properties and gasification reactivity of coal char and petroleum coke, separately at the high temperature pyrolysis (950–1400 °C) with slow heating rate and pyrolysis pressure of the atmospheric pressure and at the pressurized pyrolysis (the atmospheric pressure to 3 MPa) with rapid heating rate and the pyrolysis temperature of 950 °C. Some significant differences in those between coal chars and petroleum coke were found. The high temperature pyrolysis caused more easily the graphitization of petroleum coke than that of coal char, especially in the higher temperature range. The increasing pyrolysis temperature resulted in the decrease of surface areas of coal char and the increase of surface areas of petroleum coke. As the pyrolysis pressure was elevated from the atmospheric pressure to 3 MPa, surface areas of petroleum coke initially increased and then decreased, while those of coal chars presented an opposite tendency. The increasing pyrolysis temperature was adverse to the gasification activity of coal chars and was favorable for the gasification activity of petroleum coke. Also, the effects of the pyrolysis pressure on the gasification activity of coal char and petroleum coke were significantly different. The gasification activity of petroleum coke was obviously lower than that of coal chars, and even lower than that of the natural graphite.  相似文献   
24.
Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H2) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify®) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.  相似文献   
25.
Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngas produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H2S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H2S is significantly affected by the concentration of CO2 in the syngas. When only a small percentage of CO2 is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H2S removal can be maintained at a high level.To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford good gas-cleaning performance.  相似文献   
26.
This paper presents numerical and experimental investigations on laser melting of SS grade 316L powder on top of AISI 316L substrate using a pulsed Nd:YAG laser. The objectives of the present study are to understand the effect of process parameters such as laser power, scanning speed and beam size on geometry characteristics of the melt zone and ball formation. We formulated a moving heat source problem and obtained transient temperature solutions using commercial finite element solver. The geometry characteristics of the melt zone are evaluated from the temperature solutions and compared with experimental results. The effect of laser parameters on the geometry, morphology and homogeneity of single track realization was methodically analyzed by utilizing characterization tools such as laser particle size analyzer, macro and microscopic inspection, Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The results presented in this paper are beneficial to realize homogenous layer formation in additive manufacturing processes involving powder melting by laser beam.  相似文献   
27.
Increasing volumes of municipal solid waste (MSW) pose disposal problems for many cities. Costs are rising as landfilling becomes more difficult. The production of clean transportation fuels (methanol or hydrogen) from MSW is one economically and environmentally promising option for dealing with these problems. An attractive feature is that elimination of essentially all air pollutant emissions is inherent in the process. Current and future air emissions standards should be easily met. Methanol or hydrogen used in fuel cell vehicles (FCV) can help address problems of deteriorating urban air quality due to vehicle pollution and heavy dependence of the transport sector on imported petroleum. Buses are initial targets for commercial application of fuel cells. Coupled with FCVs, MSW could become a major transportation energy resource. For example, less than 25% of New York City's MSW supply would be sufficient to produce the methanol or hydrogen needed to fuel the entire city's bus fleet, if the buses were fuel cell powered. Estimated breakeven tipping fees required for hydrogen or methanol from MSW to compete with the cost of these fuels made from natural gas today are $52 to $89/raw tonne MSW for hydrogen and $64 to $104/raw tonne MSW for methanol (in 1991$), depending on the gasification technology considered. For comparison, the average tipping fee today in New York City is $74/tonne (1991$). Because of the high fuel economies expected for fuel cell buses, total lifecycle costs per bus-km could be lower than for conventional diesel-engine buses.  相似文献   
28.
弄清垃圾灰渣的熔融特性对于保证生活垃圾的气化熔融与液态出渣具有重要作用。针对重庆生活垃圾灰与无烟煤灰形成的灰渣,实验研究了在不同的燃料添加量及添加剂条件下灰渣的熔点与粘度,并结合炉温的变化,分析了不同条件对灰渣熔融及液态出渣的影响。结果表明,灰渣的熔点与粘度均随燃料添加量的增加而升高;向燃料比为10%的灰渣中加入添加剂后,灰渣的熔点降低幅度较小,其粘度却随碱度的增加而增大以至熔渣流动性变差;燃料比为40%时,灰渣熔点与粘度均随添加剂的加入而显著降低,且向渣中加入CaO使得灰渣碱度为1.2时灰渣熔点较低且粘度较小,有利于其熔融与液态出渣。  相似文献   
29.
Thermal treatment of municipal solid waste (MSW) has become a common practice in waste volume reduction and resource recovery. For the utilization of molten slag for construction materials and metal recovery, it is important to understand the behavior of heavy metals in the melting process. In this study, the correlation between the contents of elements in feed materials and MSW molten slag and their distributions in the ash melting process, including metal residues, are investigated. The hazardous metal contents in the molten slag were significantly related to the contents of metals in the feed materials. Therefore, the separation of products containing these metals in waste materials could be an effective means of producing environmentally safe molten slag with a low hazardous metals content. The distribution ratios of elements in the ash melting process were also determined. The elements Zn and Pb were found to have a distribution ratio of over 60% in fly ash from the melting furnace and the contents of these metals were also high; therefore, Zn and Pb could be potential target metals for recycling from fly ash from the melting furnace. Meanwhile, Cu, Ni, Mo, Sn, and Sb were found to have distribution ratios of over 60% in the metal residue. Therefore, metal residue could be a good resource for these metals, as the contents of Cu, Ni, Mo, Sn, and Sb in metal residue are higher than those in other output materials.  相似文献   
30.
添加剂对垃圾焚烧飞灰熔融过程二噁分解的影响   总被引:3,自引:0,他引:3  
为了研究添加剂对垃圾飞灰熔融处理过程中二噁(口英)分解特性的影响,选择碱性氧化物CaO和液体陶瓷(LC)2种添加剂,改变温度、气氛和熔融时间研究2种添加剂对二噁(口英)分解率的影响.研究表明CaO对二噁(口英)分解影响随气氛不同而改变,氧化气氛下,加入CaO使二噁(口英)的分解率略微降低,而在还原气氛下则会使二噁(口英)分解率升高.液体陶瓷添加剂对熔融过程二噁(口英)分解有显著影响.1400℃时,随着LC添加比例由0增加到10%,二噁(口英)分解率则从99.997%升高到100%.同时加入10%的LC可以使二噁(口英)的完全分解温度由无添加剂时的1460℃降低至1100℃.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号