首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4762篇
  免费   635篇
  国内免费   2772篇
安全科学   376篇
废物处理   237篇
环保管理   419篇
综合类   4483篇
基础理论   1137篇
环境理论   2篇
污染及防治   1096篇
评价与监测   267篇
社会与环境   115篇
灾害及防治   37篇
  2024年   10篇
  2023年   94篇
  2022年   164篇
  2021年   241篇
  2020年   191篇
  2019年   269篇
  2018年   264篇
  2017年   245篇
  2016年   295篇
  2015年   339篇
  2014年   396篇
  2013年   478篇
  2012年   549篇
  2011年   558篇
  2010年   444篇
  2009年   519篇
  2008年   349篇
  2007年   398篇
  2006年   414篇
  2005年   318篇
  2004年   233篇
  2003年   251篇
  2002年   195篇
  2001年   168篇
  2000年   153篇
  1999年   126篇
  1998年   87篇
  1997年   82篇
  1996年   72篇
  1995年   65篇
  1994年   39篇
  1993年   38篇
  1992年   28篇
  1991年   23篇
  1990年   12篇
  1989年   6篇
  1988年   7篇
  1987年   6篇
  1986年   4篇
  1985年   8篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有8169条查询结果,搜索用时 15 毫秒
611.
采用水热法和溶胶凝胶法制备新型BiOCl/TiO2复合材料并明确了最优的掺杂比例(2%).随后利用X射线衍射(XRD)、紫外可见漫反射(DRS)、透射电镜(TEM)和X射线光电子能谱(XPS)对该材料进行表征.由于禁带宽度较大,纯BiOCl和TiO2的可见光催化性能极差,然而二者复合后,同条件下的苯降解率却大幅提升,可以达到40%以上.经证实,催化剂制备过程中,Bi的状态发生变化,在TiO2导、价带之间插入新的能级,使其禁带宽度变窄,电子可以实现可见光跃迁.  相似文献   
612.
基于BP神经网络优化制备Cu-Ce/TiO_2及其光催化活性研究   总被引:1,自引:1,他引:0  
张浩  许谨  曹现雷 《环境科学学报》2015,35(8):2450-2456
采用Cu和Ce对TiO2进行改性,基于正交实验设计和BP神经网络研究了Cu-Ce/TiO2中Cu-Ce对TiO2的摩尔百分数、Cu-Ce/TiO2中CuCe摩尔比及Cu-Ce/TiO2烧结温度对Cu-Ce/TiO2光催化降解甲醛溶液性能的影响.同时,对Cu-Ce/TiO2制备方案进行了优化,并运用X射线衍射仪、扫描电子显微镜和紫外-可见分光光度计对最佳条件下制备的Cu-Ce/TiO2进行表征.结果表明,优化的制备条件为Cu-Ce/TiO2中Cu-Ce对TiO2的摩尔百分数为2.88%,Cu-Ce/TiO2中Cu-Ce的摩尔比为1∶1,Cu-Ce/TiO2的烧结温度为570℃.共掺杂Cu离子和Ce离子能有效避免掺杂TiO2晶格内部表层和近表层产生较多的位错,从而抑制晶格畸变增大;诱导TiO2中锐钛矿型晶体向金红石型晶体转变的能力增强,有效抑制电子-空穴对的复合,产生介电局域效应.  相似文献   
613.
This research aimed to investigate the interspecific and intraspecific identification of Dendrobium by using the multi-locus method so as to provide a molecular basis for Dendrobium identification through the combination of chloroplast psbA-trnH intergenic region sequences and ribosome 5S rRNA gene spacer sequences. PCR direct sequencing was applied to detect the chloroplast psbA-trnH intergenic region sequences as well as the ribosome 5S rRNA gene spacer sequences of 12 Dendrobium species, while the psbA-trnH intergenic region sequences of Dendrobium denneanum dq-2 variety and dq- 5line were cloned and sequenced for single nucleotide polymorphism (SNP) analyzing. The sequences were analyzed by the software Sequencher4.14, Bioedit7.0, MEGA5.2 and Dansp5.0; the interspecific and intraspecific Kimara-2-Parameter(K2P) distances were also calculated. The phylogenetic tree (using Neighbor joining method) was constructed with Bulbophyllum odoratissimum and Bletilla striata as outgroup. The results showed an average length of chloroplast psbA-trnH gene sequences in Dendrobium as 742.3 bp, with 72 variable sites, including 33 information sites; the average length of the ribosome 5S rRNA gene spacer sequences in Dendrobium was 336.4 bp, with 213 variable sites including 139 information sites. Using psbAtrnH intergenic region sequences in combination with ribosome 5S rRNA gene spacer sequences can not only identify D. denneanum, D. hancockil, D. thysiflorum, D. devonianum, D. moniliforme, D. chrysotoxum, D. officinale, D. heterocarpum and D. nobile, but also differentiate D. officinale from different geographical populations, and distinguish the dq-2 variety and dq 5line with SNP in the multi locus of D. denneanum.  相似文献   
614.
秸秆添加对厨余垃圾堆肥时H_2S和NH_3排放的影响   总被引:1,自引:1,他引:0  
《环境工程》2015,33(1):100-104
厨余垃圾堆肥过程中NH3和H2S的排放不但降低了堆肥的养分含量,而且会引发严重的恶臭。以厨余垃圾为研究对象,以玉米秸秆为膨松剂,设置5%、10%、15%、20%(质量分数)4个添加比例(湿基)的堆肥处理,研究秸秆添加量对厨余垃圾堆肥过程中H2S和NH3排放的影响。结果表明:从温度来看,仅T4处理未达到无害化和腐熟的要求。氧气不足是造成H2S排放的主要原因,4个堆肥处理的H2S主要集中在前2周排放,随着秸秆添加量的增加,H2S的排放量逐渐降低。与T1处理相比,T2、T3、T4的H2S累积排放量分别降低了35.5%、44.7%、64.2%。各处理NH3的排放趋势与H2S类似,高温期为NH3释放的关键时期,NH3累积释放量占总释放量的62.2%~72.2%,与T1处理相比,T2、T3和T4的NH3累积排放量分别降低了36.9%、45.2%、76.3%。由此可见,添加适量的玉米秸秆不但能促进厨余垃圾堆肥的进行,明显降低堆肥过程中H2S和NH3的排放,而且可以实现玉米秸秆的资源化利用。  相似文献   
615.
Bacterial decolorization of anthraquinone dye intermediates is a slow process under aerobic conditions. To speed up the process, in the present study, effects of various nutrients on 1-amino-4-bromoanthraquinone-2-sulfonic acid (ABAS) decolorization by Sphingomonas xenophaga QYY were investigated. The results showed that peptone, yeast extract and casamino acid amendments promoted ABAS bio-decolorization. In particular, the addition of peptone and casamino acids could improve the decolorization activity of strain QYY. Further experiments showed that L-proline had a more significant accelerating effect on ABAS decolorization compared with other amino acids. L-Proline not only supported cell growth, but also significantly increased the decolorization activity of strain QYY. Membrane proteins of strain QYY exhibited ABAS decolorization activities in the presence of L-proline or reduced nicotinamide adenine dinucleotide, while this behavior was not observed in the presence of other amino acids. Moreover, the positive correlation between L-proline concentration and the decolorization activity of membrane proteins was observed, indicating that L-proline plays an important role in ABAS decolorization. The above findings provide us not only a novel insight into bacterial ABAS decolorization, but also an L-proline-supplemented bioaugmentation strategy for enhancing ABAS bio-decolorization.  相似文献   
616.
Soybean wastewater was used to generate biomass resource by use of purple non-sulfur bacteria (PNSB). This study investigated the enhancement of PNSB cell accumulation in wastewater by Mg2+ under the light-anaerobic condition. Results showed that with the optimal Mg2+ dosage of 10 mg/L, biomass production was improved by 70% to 3630 mg/L, and biomass yield also was improved by 60%. Chemical Oxygen Demand (COD) removal reached above 86% and hydraulic retention time was shortened from 96 to 72 hr. The mechanism analysis indicated that Mg2+ could promote the content of bacteriochlorophyll in photosynthesis because Mg2+ is the bacteriochlorophyll active center, and thus improved adenosine triphosphate (ATP) production. An increase of ATP production enhanced the conversion of organic matter in wastewater into PNSB cell materials (biomass yield) and COD removal, leading to more biomass production. With 10 mg/L Mg2+, bacteriochlorophyll content and ATP production were improved by 60% and 33% respectively.  相似文献   
617.
The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al. (2013) developed a new method using a bubble trap device to collect gas samples from waters. However, the determination accuracy of sampling volume and gas component concentration was still debatable. In this study, the method was optimized for in situ sampling, accurate volume measurement and direct injection to a gas chromatograph for the analysis of N2 and other gases. By the optimized new method, the recovery rate for N2 was 100.28% on average; the mean coefficient of determination (R2) was 0.9997; the limit of detection was 0.02%. We further assessed the effects of the new method, bottle full of water, vs. vacuum bag and vacuum vial methods, on variations of N2 concentration as influenced by sample storage times of 1, 2, 3, 5, and 7 days at constant temperature of 15°C, using indices of averaged relative peak area (%) in comparison with the averaged relative peak area of each method at 0 day. The indices of the bottle full of water method were the lowest (99.5%-108.5%) compared to the indices of vacuum bag and vacuum vial methods (119%-217%). Meanwhile, the gas chromatograph determination of other gas components (O2, CH4, and N2O) was also accurate. The new method was an alternative way to investigate N2 released from various kinds of aquatic ecosystems.  相似文献   
618.
In order to efficiently remove volatile organic compounds (VOCs) from indoor air, onedimensional titanate nanotubes (TiNTs) were hydrothermally treated to prepare TiO2 nanocrystals with different crystalline phases, shapes and sizes. The influences of various acids such as CH3COOH, HNO3, HCl, HF and H2SO4 used in the treatment were separately compared to optimize the performance of the TiO2 nanocrystals. Comparedwith the strong and corrosive inorganic acids, CH3COOH was not only safer andmore environmentally friendly, but also more efficient in promoting the photocatalytic activity of the obtained TiO2. Itwasobserved that the anatase TiO2 synthesized in 15 mol/L CH3COOH solution exhibited the highest photodegradation rate of gaseous toluene (94%), exceeding that of P25 (44%) by a factor ofmore than two. The improved photocatalytic activity was attributed to the small crystallite size and surface modification by CH3COOH. The influence of relative humidity (20%-80%) on the performance of TiO2 nanocrystals was also studied. The anatase TiO2 synthesized in 15 mol/L CH3COOH solution was more tolerant tomoisture than the other TiO2 nanocrystals and P25.  相似文献   
619.
ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a = b = 11.176479 Å and c= 10.014323 Å. The band gap of ZnBiYO4 was estimated to be 1.58 eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min-1 for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO42- and NO3-, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography- mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems.  相似文献   
620.
Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine–formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), thermogravimetric analysis(TGA), elemental(CHN) analysis, Fourier transform infrared(FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO_2 capture.The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO_2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO_2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO_2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent–CO_2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption–desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号