首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2392篇
  免费   656篇
  国内免费   1036篇
安全科学   203篇
废物处理   102篇
环保管理   111篇
综合类   1710篇
基础理论   1378篇
污染及防治   396篇
评价与监测   127篇
社会与环境   24篇
灾害及防治   33篇
  2024年   12篇
  2023年   68篇
  2022年   105篇
  2021年   131篇
  2020年   101篇
  2019年   94篇
  2018年   192篇
  2017年   220篇
  2016年   238篇
  2015年   258篇
  2014年   261篇
  2013年   291篇
  2012年   300篇
  2011年   244篇
  2010年   263篇
  2009年   222篇
  2008年   177篇
  2007年   143篇
  2006年   142篇
  2005年   106篇
  2004年   77篇
  2003年   74篇
  2002年   65篇
  2001年   50篇
  2000年   45篇
  1999年   39篇
  1998年   22篇
  1997年   31篇
  1996年   17篇
  1995年   25篇
  1994年   17篇
  1993年   19篇
  1992年   11篇
  1991年   6篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1980年   1篇
排序方式: 共有4084条查询结果,搜索用时 609 毫秒
941.
Abstract: In recent decades the rate and geographic extent of land‐use and land‐cover change has increased throughout the world's humid tropical forests. The pan‐tropical geography of forest change is a challenge to assess, and improved estimates of the human footprint in the tropics are critical to understanding potential changes in biodiversity. We combined recently published and new satellite observations, along with images from Google Earth and a literature review, to estimate the contemporary global extent of deforestation, selective logging, and secondary regrowth in humid tropical forests. Roughly 1.4% of the biome was deforested between 2000 and 2005. As of 2005, about half of the humid tropical forest biome contained 50% or less tree cover. Although not directly comparable to deforestation, geographic estimates of selective logging indicate that at least 20% of the humid tropical forest biome was undergoing some level of timber harvesting between 2000 and 2005. Forest recovery estimates are even less certain, but a compilation of available reports suggests that at least 1.2% of the humid tropical forest biome was in some stage of long‐term secondary regrowth in 2000. Nearly 70% of the regrowth reports indicate forest regeneration in hilly, upland, and mountainous environments considered marginal for large‐scale agriculture and ranching. Our estimates of the human footprint are conservative because they do not resolve very small‐scale deforestation, low‐intensity logging, and unreported secondary regrowth, nor do they incorporate other impacts on tropical forest ecosystems, such as fire and hunting. Our results highlight the enormous geographic extent of forest change throughout the humid tropics and the considerable limitations of the science and technology available for such a synthesis.  相似文献   
942.
Abstract: Unsustainable hunting of wildlife for food empties tropical forests of many species critical to forest maintenance and livelihoods of forest people. Extractive industries, including logging, can accelerate exploitation of wildlife by opening forests to hunters and creating markets for bushmeat. We monitored human demographics, bushmeat supply in markets, and household bushmeat consumption in five logging towns in the northern Republic of Congo. Over 6 years we recorded 29,570 animals in town markets and collected 48,920 household meal records. Development of industrial logging operations led to a 69% increase in the population of logging towns and a 64% increase in bushmeat supply. The immigration of workers, jobseekers, and their families altered hunting patterns and was associated with increased use of wire snares and increased diversity in the species hunted and consumed. Immigrants hunted 72% of all bushmeat, which suggests the short‐term benefits of hunting accrue disproportionately to “outsiders” to the detriment of indigenous peoples who have prior, legitimate claims to wildlife resources. Our results suggest that the greatest threat of logging to biodiversity may be the permanent urbanization of frontier forests. Although enforcement of hunting laws and promotion of alternative sources of protein may help curb the pressure on wildlife, the best strategy for biodiversity conservation may be to keep saw mills and the towns that develop around them out of forests.  相似文献   
943.
Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on‐the‐ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion. We expanded these methods by introducing another form of spatial allocation of conservation effort relevant for land‐use zoning at the landscape scale that avoids negative ecological effects of human land use outside protected areas. We call our method inverse spatial conservation prioritization. It can be used to identify areas suitable for economic development while simultaneously limiting total ecological and environmental effects of that development at the landscape level by identifying areas with highest economic but lowest ecological value. Our method is not based on a priori targets, and as such it is applicable to cases where the effects of land use on, for example, individual species or ecosystem types are relatively small and would not lead to violation of regional or national conservation targets. We applied our method to land‐use allocation to peat mining. Our method identified a combination of profitable production areas that provides the needed area for peat production while retaining most of the landscape‐level ecological value of the ecosystem. The results of this inverse spatial conservation prioritization are being used in land‐use zoning in the province of Central Finland.  相似文献   
944.
Abstract: The influence of non‐native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non‐native species may both harm and provide refugia for endangered native species. The invasive non‐native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats[Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non‐native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non‐native species can be used to mitigate the impacts of other non‐native species on native species.  相似文献   
945.
Abstract: The acquisition or designation of new protected areas is usually based on criteria for representation of different ecosystems or land‐cover classes, and it is unclear how wellthreatened species are conserved within protected‐area networks. Here, we assessed how Australia's terrestrial protected‐area system (89 million ha, 11.6% of the continent) overlaps with the geographic distributions of threatened species and compared this overlap against a model that randomly placed protected areas across the continent and a spatially efficient model that placed protected areas across the continent to maximize threatened species’ representation within the protected‐area estate. We defined the minimum area needed to conserve each species on the basis of the species’ range size. We found that although the current configuration of protected areas met targets for representation of a given percentage of species’ ranges better than a random selection of areas, 166 (12.6%) threatened species occurred entirely outside protected areas and target levels of protection were met for only 259 (19.6%) species. Critically endangered species were among those with the least protection; 12 (21.1%) species occurred entirely outside protected areas. Reptiles and plants were the most poorly represented taxonomic groups, and amphibians the best represented. Spatial prioritization analyses revealed that an efficient protected‐area system of the same size as the current protected‐area system (11.6% of the area of Australia) could meet representation targets for 1272 (93.3%) threatened species. Moreover, the results of these prioritization analyses showed that by protecting 17.8% of Australia, all threatened species could reach target levels of representation, assuming all current protected areas are retained. Although this amount of area theoretically could be protected, existing land uses and the finite resources available for conservation mean land acquisition may not be possible or even effective for the recovery of threatened species. The optimal use of resources must balance acquisition of new protected areas, where processes that threaten native species are mitigated by the change in ownership or on‐ground management jurisdiction, and management of threatened species inside and outside the existing protected‐area system.  相似文献   
946.
Abstract: Understanding the risk of extinction of a single population is an important problem in both theoretical and applied ecology. Local extinction risk depends on several factors, including population size, demographic or environmental stochasticity, natural catastrophe, or the loss of genetic diversity. The probability of local extinction may also be higher in low‐quality sink habitats than in high‐quality source habitats. We tested this hypothesis by comparing local extinction rates of 15 species of Odonata (dragonflies and damselflies) between 1930–1975 and 1995–2003 in central Finland. Local extinction rates were higher in low‐quality than in high‐quality habitats. Nevertheless, for the three most common species there were no differences in extinction rates between low‐ and high‐quality habitats. Our results suggest that a good understanding of habitat quality is crucial for the conservation of species in heterogeneous landscapes.  相似文献   
947.
A bacterial strain capable of degrading carbofuran as the sole carbon source was isolated from carbofuran-phytoremediated rhizosphere soil of rice. A 16S rRNA study identified the strain as Burkholderia sp. (isolate PCL3). Free cells of isolate PCL3 possessed inhibitory-type degradation kinetics with a q max of 0.087 day?1 and S m of 248.76 mg·L?1. Immobilised PCL3 on corncob and sugarcane bagasse possessed Monod-type degradation kinetics with a q max of 0.124 and 0.098 day?1, respectively. The optimal pH and temperature with the highest degradation rate coefficient of carbofuran were pH 7.5 and 35 °C, respectively.  相似文献   
948.
Abstract: Competitive species interactions may contribute to population declines. Purportedly, Red‐bellied Woodpeckers (Melanerpes carolinus), a common species, and Red‐cockaded Woodpeckers (Picoides borealis), an endangered species, compete for roosting and nesting cavities in living pine trees. To determine whether behavioral interactions measured at the individual level manifest themselves at the population level, we conducted field experiments designed to test whether the presence of Red‐bellied Woodpeckers resulted in a decrease in fitness to Red‐cockaded Woodpeckers. As part of a 4‐year study examining the nature of interspecific interactions in two populations of Red‐cockaded Woodpeckers (one stable, the Apalachicola Ranger District; one declining, the Wakulla Ranger District) in the Apalachicola National Forest, Florida, we conducted a set of Red‐bellied Woodpecker removal experiments. Paradoxically, following the removal of Red‐bellied Woodpeckers, we observed decreases in Red‐cockaded Woodpecker group size, proportion of nests that were successful, and proportion of individuals remaining on territories. Removal of Red‐bellied Woodpeckers may have exaggerated the immigration rate of Red‐bellied Woodpeckers to Red‐cockaded Woodpecker territories. The Red‐cockaded Woodpeckers in the Apalachicola Ranger District likely can withstand pressure from immigrating Red‐bellied Woodpeckers given that their population has remained relatively stable despite the presence of Red‐bellied Woodpeckers. A major factor of population persistence in the Wakulla Ranger District was the high turnover rate of adult female Red‐cockaded Woodpeckers, a phenomenon that was exacerbated by removal of Red‐bellied Woodpeckers. Relying solely on observations of apparently competitive interactions between individuals may not necessarily provide information about population‐level outcomes. Paradoxically, removing species that appear to be competitors may harm species of concern.  相似文献   
949.
Abstract: Rapidly changing landscapes have spurred the need for quantitative methods for conservation assessment and planning that encompass large spatial extents. We devised and tested a multispecies framework for conservation planning to complement single‐species assessments and ecosystem‐level approaches. Our framework consisted of 4 elements: sampling to effectively estimate population parameters, measuring how human activity affects landscapes at multiple scales, analyzing the relation between landscape characteristics and individual species occurrences, and evaluating and comparing the responses of multiple species to landscape modification. We applied the approach to a community of terrestrial birds across 25,000 km2 with a range of intensities of human development. Human modification of land cover, road density, and other elements of the landscape, measured at multiple spatial extents, had large effects on occupancy of the 67 species studied. Forest composition within 1 km of points had a strong effect on occupancy of many species and a range of negative, intermediate, and positive associations. Road density within 1 km of points, percent evergreen forest within 300 m, and distance from patch edge were also strongly associated with occupancy for many species. We used the occupancy results to group species into 11 guilds that shared patterns of association with landscape characteristics. Our multispecies approach to conservation planning allowed us to quantify the trade‐offs of different scenarios of land‐cover change in terms of species occupancy.  相似文献   
950.
Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon mixture contains about 30% (volume) organic carbon (composted leaf mulch) and 70% (volume) sand and gravel. The Fe0-bearing organic carbon mixture contains 10% (volume) zero-valent iron, 20% (volume) organic carbon, 10% (volume) limestone, and 60% (volume) sand and gravel. Simulated groundwater containing 380 ppm sulfate, 5 ppm As, and 0.5 ppm Sb was passed through the columns at flow rates of 64 (the OC column) and 62 (the FeOC column) ml d− 1, which are equivalent to 0.79 (the OC column) and 0.78 (the FeOC column) pore volumes (PVs) per week or 0.046 m d− 1 for both columns. The OC column showed an initial sulfate reduction rate of 0.4 µmol g (OC)− 1 d− 1 and exhausted its capacity to promote sulfate reduction after 30 PVs, or 9 months of flow. The FeOC column sustained a relatively constant sulfate reduction rate of 0.9 µmol g (OC)− 1 d− 1 for at least 65 PVs (17 months). In the FeOC column, the δ34S values increase with the decreasing sulfate concentration. The δ34S fractionation follows a Rayleigh fractionation model with an enrichment factor of 21.6‰. The performance decline of the OC column was caused by the depletion of substrate or electron donor. The cathodic production of H2 by anaerobic corrosion of Fe probably sustained a higher level of SRB activity in the FeOC column. These results suggest that zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs. A sharp increase in the δ13C value of the dissolved inorganic carbon and a decrease in the concentration of HCO3 indicate that hydrogenotrophic methanogenesis is occurring in the first 15 cm of the FeOC column.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号