首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   4篇
  国内免费   31篇
安全科学   1篇
废物处理   2篇
环保管理   18篇
综合类   65篇
基础理论   26篇
污染及防治   53篇
评价与监测   16篇
社会与环境   1篇
  2023年   5篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   3篇
  2018年   8篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   9篇
  2011年   10篇
  2010年   9篇
  2009年   10篇
  2008年   19篇
  2007年   14篇
  2006年   13篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1996年   2篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
31.
Nitrate analysis in water is one of the most frequently applied methods in environmental chemistry. Current methods for nitrate are generally based on toxic substances. Here, we show that a viable alternative method is to use the enzyme nitrate reductase. The key to applying this Green Chemistry solution for nitrate analysis is plentiful, inexpensive, analytical grade enzyme. We demonstrate that recombinant Arabidopsis nitrate reductase, expressed in the methylotrophic yeast Pichia pastoris, is a highly effective catalyst for nitrate analysis at 37°C. Recombinant production of enzyme ensures consistent quality and provides means to meet the needs of environmental chemistry.  相似文献   
32.
Excessive nitrate(NO_3~-) is among the most problematic surface water and groundwater pollutants.In this study,a type of magnetic cationic hydrogel(MCH) is employed for NO_3~-adsorption and well characterized herein.Its adsorption capacity is considerably pHdependent and achieves the optimal adsorption(maximum NO_3~--adsorption capacity is95.88±1.24 mg/g) when the pH level is 5.2-8.8.The fitting result using the homogeneous surface diffusion model indicates that the surface/film diffusion controls the adsorption rate,and NO_3~-approaches the center of MCH particles within 30 min.The diffusion coefficient(D_s) and external mass transfer coefficient(k_F) in the liquid phase are1.15 × 10~(-6) cm~2/min and 4.5 × 10~(-6) cm/min,respectively.The MCH is employed to treat surface water that contains 10 mg/L of NO_3~-,and it is found that the optimal magnetic separation time is 1.6 min.The high-efficiency mass transfer and magnetic separation of MCH during the adsorption-regeneration process favors its application in surface water treatment.Furthermore,the study of the mechanism involved reveals that both-N~+(CH_3)_3 groups and NO_3~-are convoluted in adsorption via electrostatic interactions.It is further found that ion exchange between NO_3~-and chlorine occurs.  相似文献   
33.
When wood-based activated carbon was tailored with quaternary ammonium/epoxide (QAE) forming compounds (QAE-AC), this tailoring dramatically improved the carbon's effectiveness for removing perfluorooctanoic acid (PFOA) from groundwater. With favorable tailoring, QAE-AC removed PFOA from groundwater for 118,000 bed volumes before half-breakthrough in rapid small scale column tests, while the influent PFOA concentration was 200 ng/L. The tailoring involved pre-dosing QAE at an array of proportions onto this carbon, and then monitoring bed life for PFOA removal. When pre-dosing with 1 mL QAE, this PFOA bed life reached an interim peak, whereas bed life was less following 3 mL QAE pre-dosing, then PFOA bed life exhibited a steady rise for yet subsequently higher QAE pre-dosing levels. Large-scale atomistic modelling was used herein to provide new insight into the mechanism of PFOA removal by QAE-AC. Based on experimental results and modelling, the authors perceived that the QAE's epoxide functionalities cross-linked with phenolics that were present along the activated carbon's graphene edge sites, in a manner that created mesopores within macroporous regions or created micropores within mesopores regions. Also, the QAE could react with hydroxyls outside of these pore, including the hydroxyls of both graphene edge sites and other QAE molecules. This latter reaction formed new pore-like structures that were external to the activated carbon grains. Adsorption of PFOA could occur via either charge balance between negatively charged PFOA with positively charged QAE, or by van der Waals forces between PFOA's fluoro-carbon tail and the graphene or QAE carbon surfaces.  相似文献   
34.
氮是水体中的主要污染物之一。近几十年来,随着工农业的发展,使得水体中氮的污染呈上升趋势,并在今后可能会持续,最根本的解决方法是找到源头,从根本上切断污染途径以达到消除氮源的污染。在查阅相关文献的基础上,阐述了水中用同位素追踪研究氮的来源的研究进展和存在的问题,对于评价氮的污染现状、污染控制和环境管理具有十分重要的意义。  相似文献   
35.
Mendoza C  Assadian NW  Lindemann W 《Chemosphere》2006,63(11):1933-1941
The determination of nitrogen (N) based loading rates for land application of biosolids is challenging and site specific. Over loading may contribute to environmental, agricultural, or human health problems. The objective of this study was to monitor N mineralization and losses in a moderately alkaline and calcareous desert soil amended with either anaerobically digested (AN) or lime-stabilized (LS) biosolids, and irrigated with and without urea enriched water. For Experiment 1, N inputs, leaching and residuals in soil were evaluated in an open soil column system. For Experiment 2, ammonia (NH3) emissions were evaluated in a closed soil column system. In Experiment 1, AN and LS biosolids increased soil ON (organic N) by three and two fold, respectively. Respective net N mineralization of ON from biosolids alone was 90% and 62% without urea, and 71% and 77%, respectively with added urea. Nitrogen leaching losses and residuals in amended soil did not account for all N inputs into the soil/biosolids system. In Experiment 2, NH3 emissions were not significantly different among treated soils with or without added urea, except LS amended soil receiving urea. Ammonia losses did not account for unaccounted N in Experiment 1. We concluded that deep placement and rapid mineralization of AN biosolids promoted anaerobic soil conditions and denitrification, in addition to the high denitrification potential of desert soil. LS biosolids showed greater potential than AN biosolids for safe and beneficial land application to desert soils regardless of biosolids placement and the inclusion of N rich irrigation water.  相似文献   
36.
Natural attenuation of contaminants in groundwater depends on an adequate supply of electron acceptors to stimulate biodegradation. In an alluvial aquifer contaminated with leachate from an unlined municipal landfill, the mechanism of recharge infiltration was investigated as a source of electron acceptors. Water samples were collected monthly at closely spaced intervals in the top 2 m of the saturated zone from a leachate-contaminated well and an uncontaminated well, and analyzed for delta(18)O, delta(2)H, non-volatile dissolved organic carbon (NVDOC), SO(4)(2-), NO(3)(-) and Cl(-). Monthly recharge amounts were quantified using the offset of the delta(18)O or delta(2)H from the local meteoric water line as a parameter to distinguish water types, as evaporation and methanogenesis caused isotopic enrichment in waters from different sources. Presence of dissolved SO(4)(2-) in the top 1 to 2 m of the saturated zone was associated with recharge; SO(4)(2-) averaged 2.2 mM, with maximum concentrations of 15 mM. Nitrate was observed near the water table at the contaminated site at concentrations up to 4.6 mM. Temporal monitoring of delta(2)H and SO(4)(2-) showed that vertical transport of recharge carried SO(4)(2-) to depths up to 1.75 m below the water table, supplying an additional electron acceptor to the predominantly methanogenic leachate plume. Measurements of delta(34)S in SO(4)(2-) indicated both SO(4)(2-) reduction and sulfide oxidation were occurring in the aquifer. Depth-integrated net SO(4)(2-) reduction rates, calculated using the natural Cl(-) gradient as a conservative tracer, ranged from 7.5x10(-3) to 0.61 mM.d(-1) (over various depth intervals from 0.45 to 1.75 m). Sulfate reduction occurred at both the contaminated and uncontaminated sites; however, median SO(4)(2-) reduction rates were higher at the contaminated site. Although estimated SO(4)(2-) reduction rates are relatively high, significant decreases in NVDOC were not observed at the contaminated site. Organic compounds more labile than the leachate NVDOC may be present in the root zone, and SO(4)(2-) reduction may be coupled to methane oxidation. The results show that sulfur (and possibly nitrogen) redox processes within the top 2 m of the aquifer are directly related to recharge timing and seasonal water level changes in the aquifer. The results suggest that SO(4)(2-) reduction associated with the infiltration of recharge may be a significant factor affecting natural attenuation of contaminants in alluvial aquifers.  相似文献   
37.
The critical loads approach is emerging as an attractive means for evaluating the effects of atmospheric deposition on sensitive terrestrial and aquatic ecosystems. Various approaches are available for modeling ecosystem responses to deposition and for estimating critical load values. These approaches include empirical and statistical relationships, steady-state and simple process models, and integrated-effects models. For any given ecosystem, the most technically sophisticated approach will not necessarily be the most appropriate for all applications; identification of the most useful approach depends upon the degree of accuracy needed and upon data and computational requirements, biogeochemical processes being modeled, approaches used for representing model results on regional bases, and desired degree of spatial and temporal resolution. Different approaches are characterized by different levels of uncertainty. If the limitations of individual approaches are known, the user can determine whether an approach provides a reasonable basis for decision making. Several options, including point maps, grid maps, and ecoregional maps, are available for presenting model results in a regional context. These are discussed using hypothetical examples for choosing populations and damage limits. The research described in this article has been funded by the US Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, Oregon, through contract #68-C8-0006 with ManTech Environmental Technology, Inc., and Interagency Agreement #1824-B014-A7 with the U.S. Department of Energy and at Oak Ridge National Laboratory managed by Martin Marietta Energy Systems, Inc., under Contract DE-AC05-84OR21400 with the US Department of Energy. Environmental Sciences Division Publication No. 3904. It has been subjected to the agency’s peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   
38.
间歇曝气系统中硝酸盐氮负荷对脱氮效率的影响   总被引:1,自引:0,他引:1  
本试验主要考察间歇反应器缺氧阶段硝酸盐氮负荷NNO-x-N(KgNO-x-N/KgMLSSd)对脱氮效率的影响。试验结果表明:在一定水温和BOD5/NOx-N下,NNOx-N负荷对脱氮效率有显著影响。在反应器中采用高浓度污泥是降低NNOx-N的有效途径,有利于反应器脱氮速率VDN(mg/l·min)的提高。此外,通过正交试验得出了在BOD5/NO-x一定时,NNO-x-N、T℃与脱氮效率ηNO-x-N之间的数量关系式  相似文献   
39.
硝酸银沉淀-颗粒物返还法去除COD样品中的氯化物   总被引:1,自引:0,他引:1  
将样品中的颗粒物分离出来后,向样品中加入适量硝酸银,除去生成的氯化银沉淀,再将预先分离的颗粒物合并到水样中,混匀后测定。经过这样处理,既去除了水样中的Cl-,又保留了水样中原来的组份,保证了COD测定结果的准确性。  相似文献   
40.
用AQUA800辨别分析仪同时测定地面水中的氨、硝酸盐、亚硝酸盐、氯化物、正磷酸盐、总硬度和硅酸盐,是一种简便、迅速、准确、可靠的测定方法,样品无需预处理,精密度试验其变异系数分别为1.24%、2.18%、2.02%、2.67%、2.35%、3.57%、4.78%,加标回收率分别为103.5%、101.0%、95.0%、99.2%、97.6%、101.5%、98.0%,方法检测限分别为氨0.022mg/L,硝酸盐0.015mp/L,亚硝酸盐0.002tug/L,氯化物0.47mg/L,正磷酸盐0.015mg/L,总硬度17.6mg/L,硅酸盐0.55mg/L,能满足地面水中辨别分析仪同时测定氨、硝酸盐、亚硝酸盐点化物、正磷酸盐、总硬度和硅酸盐分析测定的要求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号