首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1035篇
  免费   84篇
  国内免费   171篇
安全科学   133篇
废物处理   22篇
环保管理   152篇
综合类   480篇
基础理论   213篇
污染及防治   86篇
评价与监测   25篇
社会与环境   58篇
灾害及防治   121篇
  2024年   1篇
  2023年   23篇
  2022年   32篇
  2021年   41篇
  2020年   43篇
  2019年   23篇
  2018年   26篇
  2017年   28篇
  2016年   40篇
  2015年   43篇
  2014年   42篇
  2013年   46篇
  2012年   65篇
  2011年   84篇
  2010年   58篇
  2009年   77篇
  2008年   57篇
  2007年   67篇
  2006年   75篇
  2005年   57篇
  2004年   46篇
  2003年   41篇
  2002年   35篇
  2001年   22篇
  2000年   34篇
  1999年   15篇
  1998年   15篇
  1997年   20篇
  1996年   17篇
  1995年   19篇
  1994年   17篇
  1993年   15篇
  1992年   9篇
  1991年   8篇
  1990年   8篇
  1989年   5篇
  1988年   7篇
  1986年   2篇
  1985年   2篇
  1984年   7篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有1290条查询结果,搜索用时 296 毫秒
511.
阐述了要因地制宜推广水土保持的先进技术,并提出对于辽宁省浑河、太子河、清河、柴河发源地的水土保持工作,应与生态保护紧密结合起来,重视生态与水的密切关系。对于水土流失等生态功能脆弱地区,注重发挥大自然的修复能力,实行退耕还林、封山禁牧、禁柴等措施。  相似文献   
512.
Agroforestry is considered to be a promising alternative to short-fallow shifting cultivation or other monocropping systems. An on-farm experiment was established in 1996 in northern Viet Nam to examine the contribution of the leguminous bush Tephrosia candida (Roxb.) D.C. as a fallow or hedgerow species and as a mulch producer to improve nutrient cycling and prevent nutrient losses by erosion. The systems tested were upland rice monocropping (Mono), natural fallow (NaFa), fallow of Tephrosia (TepFa), hedgerow intercropping with upland rice (Oryza sativa L.) and internal mulching using pruned Tephrosia biomass (TepAl), and upland rice with external mulching using Tephrosia biomass (TepMu). Over two cropping seasons, from April 1996 to April 1998, nutrients recycled and inputs and exports were recorded, as well as changes in C-, N- and P-pools, and in pH in the 0–5 cm topsoil layer.The Tephrosia systems (TepFa, TepAl, TepMu) prevented nutrient losses by erosion effectively. Compared to the NaFa system, the TepFa system accumulated 34% more N in the above-ground plant parts and increased topsoil N by 20%, probably due to N-fixation. There was a trend that the less labile P-pools (NaOH-P) were reallocated into the more labile P-pools (Bicarb-P) in the soil of the TepFa system. Burning released significant amounts of the inorganic P-pools in both the NaFa and TepFa systems and this effect seemed to be more pronounced in the TepFa than in the NaFa. Organic input to crop export ratios for N and P were >1 in the TepAl and TepMu treatments. This was due to a sufficient quantity and quality of the Tephrosia mulching material. However, moderately labile NaOH-extractable organic P seemed to be depleted in the topsoil due to high P uptake in the TepMu treatment. Thus, nutrient cycling and nutrient balances were improved under the Tephrosia systems. But for long-term P sustainability, there is a belief that a combined use of mulching and mineral P fertiliser is needed.  相似文献   
513.
Loess Plateau is the most serious region of soil and water loss in China and the world. The sediment carried into the Yellow River amounts to 1.6 billion tons every year. This paper reviews the factors and reasons for erosion in this area, and puts forward a comprehensive controlling policy on the basis of the principles of ecology and practise of Chinese scientists for 40 years. In conformity with the policy, a number of technical measures for controlling soil and water loss are suggested.  相似文献   
514.
林地生态用水亏缺的经济损失估算研究   总被引:1,自引:0,他引:1  
以植被微观用水过程为核心,提出林地生态用水可划分为生理消耗性用水、生态消耗性用水和非消耗性用水.探讨了林地生态系统生态用水亏缺的生态效应,并基于绿色植物的光合作用机理和生态服务功能理论,界定了林地生态用水亏缺的损失内容,构建了林地生态系统生态用水亏缺的损失估算方法.以我国北方生态环境用水亏缺的典型地域--黄淮海地区为例进行了实例研究,结果表明,黄淮海地区由林地生态系统生态用水亏缺导致的经济损失约为99.115×108元·a-1,生态用水亏缺的经济损失率达到3.53元·m-3,远高于黄淮海地区单位国民经济用水量收益率、单位农业用水收益率和单位工业用水收益.  相似文献   
515.
改变传统的利用皮托管插入法对流场分布的测试方法 ,利用激光流速计分别对两种具有代表性的液体旋流分离器的切线方向和轴线方向的流场分布进行了测试 ,得到了精确的结果。为分析、研究和提高旋流分离器的性能 ,提供了最基本的和最有效的数据  相似文献   
516.
GOAL, SCOPE, BACKGROUND: Sheet erosion from agricultural, forest and urban lands may increase stream sediment loads as well as transport other pollutants that adversely affect water quality, reduce agricultural and forest production, and increase infrastructure maintenance costs. This study uses spatial analysis techniques and a numerical modeling approach to predict areas with the greatest sheet erosion potential given different soils disturbance scenarios. METHODS: A Geographic Information System (GIS) and the Universal Soil Loss Equation (USLE) were used to estimate sheet erosion from 0.64 ha parcels of land within the watershed. The Soil Survey of St. Tammany Parish, Louisiana was digitized, required soil attributes entered into the GIS database, and slope factors determined for each 80 x 80 meter parcel in the watershed. The GIS/USLE model used series-specific erosion K factors, a rainfall factor of 89, and a GIS database of scenario-driven cropping and erosion control practice factors to estimate potential soil loss due to sheet erosion. RESULTS AND DISCUSSION: A general trend of increased potential sheet erosion occurred for all land use categories (urban, agriculture/grasslands, forests) as soil disturbance increases from cropping, logging and construction activities. Modeling indicated that rapidly growing urban areas have the greatest potential for sheet erosion. Evergreen and mixed forests (production forest) had lower sheet erosion potentials; with deciduous forests (mostly riparian) having the least sheet erosion potential. Erosion estimates from construction activities may be overestimated because of the value chosen for the erosion control practice factor. CONCLUSIONS: This study illustrates the ease with which GIS can be integrated with the Universal Soil Loss Equation to identify areas with high sheet erosion potential for large scale management and policy decision making. RECOMMENDATIONS: The GIS/USLE modeling approach used in this study offers a quick and inexpensive tool for estimating sheet erosion within watersheds using publicly available information. This method can quickly identify discrete locations with relatively precise spatial boundaries (approximately 80 meter resolution) that have a high sheet erosion potential as well as areas where management interventions might be appropriate to prevent or ameliorate erosion.  相似文献   
517.
上海郊区稻田氮素流失研究   总被引:15,自引:0,他引:15  
通过测坑和大田小区试验,研究了上海郊区稻田氮素排水流失和渗漏流失的特征、相关因素和流失负荷。结果表明,稻田综合排水TN为6.55mg/L,流失负荷为16.68kg/hm^2,以铵态氮为主,稻田氮素的排水流失负荷为16.68kg/hm^2。稻田渗漏水氮浓度与前茬作物有关,草莓和蔬菜高,麦茬低,TN为5.73mg/L,渗漏负荷为22.92kg/hm^2,其中硝态氮占50%左右。稻田氮素总流失负荷占稻季化肥用量的13.23%。测坑和大田试验都证明,施用有机肥可较多地减少稻田氮素流失量。  相似文献   
518.
油品储运系统的蒸发损耗及油气回收方案   总被引:3,自引:0,他引:3  
油品储运过程中的蒸发损耗带来了严重的危害。利用油气回收技术作为主要的降耗措施已得到重视和推广应用。通过对储运过程中油品蒸发损耗及各类油气回收装置特点的分析,阐述了不同实际生产条件下的油气回收技术的选用方案。  相似文献   
519.
Abstract:  Habitat loss and fragmentation can have strong negative impacts on populations of some native species. Spillover of generalist natural enemies from the surrounding landscape matrix is one mechanism potentially generating such effects, yet this has been rarely studied in insects. We examined the influence of habitat conversion to agriculture on the abundance and potential effects of predatory coccinellid beetles on native insect herbivores within 12 grassland remnants in central Nebraska (U.S.A.). Results of sweep sampling revealed that coccinellids were three to six times more abundant at native grassland sites embedded within cropland-dominated landscapes compared with control sites in grassland-dominated landscapes over the 3 years of the study. Exclusion experiments further demonstrated that predation intensity was strongly related to coccinellid abundances across sites and that coccinellids can dramatically reduce densities of a native aphid herbivore. In contrast to studies of specialized insect parasitoids, which have generally found reduced enemy pressure in fragmented landscapes, our results suggest that native herbivores may in some cases experience increased consumer pressure in landscapes with increasing habitat loss because of spillover of generalist predators from surrounding cropland habitats.  相似文献   
520.
To assess P losses to surface water by runoff during the rice season and by drainage flow during the winter wheat season, serial field trials were conducted in different types of paddy soils in the Tai Lake Region (TLR) during 2000 and 2001. Four P application rates were set as 0 (CK), 30, 150, and 300 kg P/hm2 for flooded rice trials and 0 (CK), 20, 80, 160 kg P/hm2 for winter wheat trials respectively. Field experiments were done in two locations with a plot size of 30 m2 and four replications in a randomized complete block design. A simplified lysimeter was installed for each plot to collect all the runoff or drainage flow from each event. Total P (TP) losses to surface water during rice season by runoff flow from four treatments were 150 (CK), 220 (T30), 395 (T150), 670 (T300) g P/hm2 in year 2000, and 298, 440, 1828, 3744 g P/hm2 in year 2001 respectively in Wuxi station, here the soil is permeable paddy soil derived from loam clay deposit. While the losses were 102, 140, 210, 270 in year 2000, and 128, 165, 359, 589 g P/hm2 in year 2001 respectively in Changshu station, here the soil is waterlogged paddy soil derived from silt loam deposit. During the winter wheat season, total P lost from the fields by drainage flow in the four treatments were 253 (CK), 382 (T20), 580 (T89), 818 (T160) g P/hm2 in year 2000–2001, and 573.3, 709.4, 1123.2, 1552.4 g P/hm2 in year 2001–2002 at the Wuxi station. While these were 395.6, 539.1, 1356.8, 1972.1 g P/hm2 in year 2000–2001, and 811.5, 1184.6, 3001.2, 5333.1 g P/hm2 in year 2001–2002 at the Changshu station. Results revealed that P fertilizer application rates significantly affected the TP concentrations and TP loads in runoff during the rice season, and by drainage flow during the winter wheat season. Both TP loads were significantly increased as the P application rate increases. The data indicate that TP losses to surface water were much higher during the winter wheat season than during the rice season in two tested sites. The data also reveal that the annual precipitation and evaporation rate affected the soil P losses to surface water significantly. Year 2000 was relatively dried with higher evaporation thus P losses to water by both runoff and drainage flow were less than in year 2001 which was a relatively wet year with lower evaporation. Results indicate that texture, structure of the soil profile, and field construction (with or without ridge and deep drains) affected soil P losses to surface water dramatically. Annual possible TP lost to water at the application rate of 50 kg P/hm2 year tested in TLR were estimated from 97 to 185 tones P from permeable paddy soils and 109–218 tones P from waterlogged paddy soils. There was no significant difference of TP lost between the CK and the T50 treatments in both stations, which indicate that there is no more TP lost in field of normal P fertilizer application rate than in control field of no P fertilized. Much higher TP lost in runoff or drainage flow from those other P application rates treatments than from the T50 treatment, which suggest that P losses to surface water would be greatly increasing in the time when higher available P accumulation in plough layer soil in this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号