首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1007篇
  免费   94篇
  国内免费   314篇
安全科学   33篇
废物处理   87篇
环保管理   99篇
综合类   611篇
基础理论   147篇
污染及防治   309篇
评价与监测   96篇
社会与环境   23篇
灾害及防治   10篇
  2024年   1篇
  2023年   32篇
  2022年   38篇
  2021年   43篇
  2020年   43篇
  2019年   40篇
  2018年   48篇
  2017年   39篇
  2016年   40篇
  2015年   45篇
  2014年   44篇
  2013年   56篇
  2012年   33篇
  2011年   83篇
  2010年   81篇
  2009年   91篇
  2008年   89篇
  2007年   70篇
  2006年   49篇
  2005年   45篇
  2004年   37篇
  2003年   39篇
  2002年   39篇
  2001年   66篇
  2000年   29篇
  1999年   33篇
  1998年   30篇
  1997年   33篇
  1996年   24篇
  1995年   15篇
  1994年   8篇
  1993年   7篇
  1992年   12篇
  1991年   10篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1415条查询结果,搜索用时 390 毫秒
81.
The effects of experimentally elevated O3 on soil respiration rates, standing fine-root biomass, fine-root production and δ13C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with contrasting rainfall patterns. During humid 2002, soil respiration rate was enhanced under elevated O3 under beech and spruce, and was related to O3-stimulated fine-root production only in beech. During dry 2003, the stimulating effect of O3 on soil respiration rate vanished under spruce, which was correlated with decreased fine-root production in spruce under drought, irrespective of the O3 regime. δ13C signature of newly formed fine-roots was consistent with the differing gs of beech and spruce, and indicated stomatal limitation by O3 in beech and by drought in spruce. Our study showed that drought can override the stimulating O3 effects on fine-root dynamics and soil respiration in mature beech and spruce forests.  相似文献   
82.
We review the ecological consequences of N deposition on the five Mediterranean regions of the world. Seasonality of precipitation and fires regulate the N cycle in these water-limited ecosystems, where dry N deposition dominates. Nitrogen accumulation in soils and on plant surfaces results in peaks of availability with the first winter rains. Decoupling between N flushes and plant demand promotes losses via leaching and gas emissions. Differences in P availability may control the response to N inputs and susceptibility to exotic plant invasion. Invasive grasses accumulate as fuel during the dry season, altering fire regimes. California and the Mediterranean Basin are the most threatened by N deposition; however, there is limited evidence for N deposition impacts outside of California. Consequently, more research is needed to determine critical loads for each region and vegetation type based on the most sensitive elements, such as changes in lichen species composition and N cycling.  相似文献   
83.
Few studies have investigated effects of increased background ozone in the absence of episodic peaks, despite a predicted increase throughout the northern hemisphere over the coming decades. In this study Leontodon hispidus was grown with Anthoxanthum odoratum or Dactylis glomerata and exposed in the UK to one of eight background ozone concentrations for 20 weeks in solardomes. Seasonal mean ozone concentrations ranged from 21.4 to 102.5 ppb. Ozone-induced senescence of L. hispidus was enhanced when grown with the more open canopy of A. odoratum compared to the denser growing D. glomerata. There was increased cover with increasing ozone exposure for both A. odoratum and D. glomerata, which resulted in an increase in the grass:Leontodon cover ratio in both community types. Carry-over effects of the ozone exposure were observed, including delayed winter die-back of L. hispidus and acceleration in the progression from flowers to seed-heads in the year following ozone exposure.  相似文献   
84.
With rising concentrations of both atmospheric carbon dioxide (CO2) and tropospheric ozone (O3), it is important to better understand the interacting effects of these two trace gases on plant physiology affecting land-atmosphere gas exchange. We investigated the effect of growth under elevated CO2 and O3, singly and in combination, on the primary short-term stomatal response to CO2 concentration in paper birch at the Aspen FACE experiment. Leaves from trees grown in elevated CO2 and/or O3 exhibited weaker short-term responses of stomatal conductance to both an increase and a decrease in CO2 concentration from current ambient level. The impairement of the stomatal CO2 response by O3 most likely developed progressively over the growing season as assessed by sap flux measurements. Our results suggest that expectations of plant water-savings and reduced stomatal air pollution uptake under rising atmospheric CO2 may not hold for northern hardwood forests under concurrently rising tropospheric O3.  相似文献   
85.
We analysed growth strategies (biomass allocation, nutrient sequestration and allocation) of heather (Calluna vulgaris) and purple moor-grass (Molinia caerulea) seedlings in monocultures and mixtures in relation to N, P, and N + P fertilisation in a greenhouse experiment in order to simulate a heath’s pioneer phase under high airborne nitrogen (N) loads. N fertilisation increased the total biomass of both species in monocultures. In mixtures, M. caerulea sequestered about 65% of the N applied, while C. vulgaris suffered from N shortage (halving of the total biomass). Thus, in mixtures only M. caerulea will benefit from airborne N loads, and competition will become increasingly asymmetric with increasing N availability. Our results demonstrate that the heath’s pioneer phase is the crucial tipping point at which the competitive vigour of M. caerulea (high belowground allocation, efficient use of belowground resources, shortened reproductive cycles) induces a shift to dominance of grasses under increased N availability.  相似文献   
86.
87.
Physical characterization and chemical analysis of settled dusts collected in Xi’an from November 2007 to December 2008 show that (1) dust deposition rates ranged from 14.6 to 350.4 g m−2 yr−1. The average deposition rate (76.7 g m−2 yr−1) ranks the 11th out of 56 dust deposition rates observed throughout the world. The coal-burning power was the major particle source; (2) on average (except site 4), ∼10% of the settled dusts having size <2.6, ∼30% having size <10.5, and >70% having size <30 μm; (3) the concentrations for 20 out of 27 elements analyzed were upto 18 times higher than their soil background values in China. With such high deposition rates of dusts that contain elevated levels of toxic elements, actions should be taken to reduce emission and studies are needed to assess the potential impacts of settled particles on surface ecosystem, water resource, and human health in the area.  相似文献   
88.
The potential of alpine moss-sedge heath to recover from elevated nitrogen (N) deposition was assessed by transplanting Racomitrium lanuginosum shoots and vegetation turfs between 10 elevated N deposition sites (8.2-32.9 kg ha−1 yr−1) and a low N deposition site, Ben Wyvis (7.2 kg ha−1 yr−1). After two years, tissue N of Racomitrium shoots transplanted from higher N sites to Ben Wyvis only partially equilibrated to reduced N deposition whereas reciprocal transplants almost matched the tissue N of indigenous moss. Unexpectedly, moss shoot growth was stimulated at higher N deposition sites. However, moss depth and biomass increased in turfs transplanted to Ben Wyvis, apparently due to slower shoot turnover (suggested to result partly from decreased tissue C:N slowing decomposition), whilst abundance of vascular species declined. Racomitrium heath has the potential to recover from the impacts of N deposition; however, this is constrained by the persistence of enhanced moss tissue N contents.  相似文献   
89.
This paper combines the world’s protected areas (PAs) under the Convention on Biological Diversity (CBD), common classification systems of ecosystem conservation status, and current knowledge on ecosystem responses to nitrogen (N) deposition to determine areas most at risk. The results show that 40% (approx. 11% of total area) of PAs currently receive >10 kg N/ha/yr with projections for 2030 indicating that this situation is not expected to change. Furthermore, 950 PAs are projected to receive >30 kg N/ha/yr by 2030 (approx. twice the 2000 number), of which 62 (approx. 11,300 km2) are also Biodiversity Hotspots and G200 ecoregions; with forest and grassland ecosystems in Asia particularly at risk. Many of these sites are known to be sensitive to N deposition effects, both in terms of biodiversity changes and ecosystem services they provide. Urgent assessment of high risk areas identified in this study is recommended to inform the conservation efforts of the CBD.  相似文献   
90.
We modelled the combined effects of past and expected future changes in climate and nitrogen deposition on tree carbon sequestration by European forests for the period 1900-2050. Two scenarios for deposition (current legislation and maximum technically feasible reductions) and two climate scenarios (no change and SRES A1 scenario) were used. Furthermore, the possible limitation of forest growth by calcium, magnesium, potassium and phosphorus is investigated. The area and age structure of the forests was assumed to stay constant to observations during the period 1970-1990. Under these assumptions, the simulations show that the change in forest growth and carbon sequestration in the past is dominated by changes in nitrogen deposition, while climate change is the major driver for future carbon sequestration. However, its impact is reduced by nitrogen availability. Furthermore, limitations in base cations, especially magnesium, and in phosphorus may significantly affect predicted growth in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号