首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1069篇
  免费   13篇
  国内免费   42篇
安全科学   415篇
废物处理   8篇
环保管理   151篇
综合类   202篇
基础理论   86篇
环境理论   1篇
污染及防治   98篇
评价与监测   62篇
社会与环境   38篇
灾害及防治   63篇
  2023年   17篇
  2022年   12篇
  2021年   50篇
  2020年   55篇
  2019年   26篇
  2018年   11篇
  2017年   32篇
  2016年   43篇
  2015年   54篇
  2014年   46篇
  2013年   70篇
  2012年   44篇
  2011年   88篇
  2010年   24篇
  2009年   75篇
  2008年   68篇
  2007年   56篇
  2006年   35篇
  2005年   39篇
  2004年   35篇
  2003年   40篇
  2002年   26篇
  2001年   20篇
  2000年   19篇
  1999年   21篇
  1998年   15篇
  1997年   13篇
  1996年   12篇
  1995年   10篇
  1994年   8篇
  1993年   16篇
  1992年   8篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   7篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有1124条查询结果,搜索用时 375 毫秒
381.
对某典型电子废弃物拆解园区排放的废气以及周边土壤中的重金属进行监测分析。结果显示,拆解过程中排放的重金属总量由高到低依次为:锡(Sn)、铬(Cr)、镍(Ni)、铅(Pb)、铜(Cu)、锑(Sb)、锰(Mn)、砷(As)、镉(Cd)、汞(Hg);从处理工艺来看,几个主要拆解工序均有重金属排放,排放量由高到低依次为:加热烤板、火法冶炼、塑料造粒和湿法冶炼工序。园区周边土壤中的Hg、Cd、Cu、Pb平均质量分数超过珠三角土壤污染风险筛选值。相关性和主成分分析结果表明,Pb、Cu、Cd、Ni、Zn等重金属来源于电子废弃物拆解过程,包括废水排放、大气干湿沉降和固体废弃物随意堆放等途径,Cr可能主要来源于成土母质,Hg有电子废弃物之外的其他来源。土壤生态风险评价结果表明,该区域属于很强生态风险,其中Cd和Hg对生态危害的贡献率达到91.6%。土壤环境容量评价结果表明,该区域仅有As和Cr的土壤现存容量较大,Zn和Ni的土壤现存环境容量较小,已达到警戒值,其余重金属均处于超载状态。该地区土壤重金属污染状况须引起足够重视,应尽快制定管控治理措施。  相似文献   
382.
We measured the concentrations of Cr, Fe, Ni, Cu, Zn, Cd, Pb and Hg, and the stable isotope ratios( δ13C and δ15N) in 87 fish samples within 12 economic fish species collected from the Dongting Lake, the second largest freshwater lake in China. With few exceptions in concentration of Cr, most of fish species showed lower concentrations of the 8 metals than legislation thresholds. Piscivorous fishes had significantly higher values of δ15N(possessing higher trophic...  相似文献   
383.

Introduction

Research and practice have demonstrated that decisions made prior to work at construction sites can influence construction worker safety. However, it has also been argued that most architects and design engineers possess neither the knowledge of construction safety nor the knowledge of construction processes necessary to effectively perform Construction Hazards Prevention through Design (CHPtD).

Method

This paper introduces a quantitative methodology that supports designers by providing a way to evaluate the safety-related performance of residential construction designs using a risk analysis-based approach. The methodology compares the overall safety risk level of various construction designs and ranks the significance of the various safety risks of each of these designs. The methodology also compares the absolute importance of a particular safety risk in various construction designs.

Results

Because the methodology identifies the relevance of each safety risk at a particular site prior to the construction stage, significant risks are highlighted in advance. Thus, a range of measures for mitigating safety risks can then be implemented during on-site construction.

Impact on industry

The methodology is specially worthwhile for designers, who can compare construction techniques and systems during the design phase and determine the corresponding level of safety risk without their creative talents being restricted. By using this methodology, construction companies can improve their on-site safety performance.  相似文献   
384.
385.
This paper provides a risk assessment method of sheltering in-place for high-pressure natural gas wells with hydrogen sulphide. In this paper, the shelter-in-place risk is estimated by integrating the health consequences of an individual taking one kind of emergency response to the emergency orders of sheltering in place from the emergency decision makers and the probability of the corresponding emergency response action. The probability of the corresponding emergency response action in the proposed method is estimated through the accident probability analysis and the probability analysis of taking a certain response action. The health consequence estimation is based on air exchange rate test of the shelter buildings as well as accident consequence calculation. The evaluation of shelter-in-place risks based on “as low as reasonably practicable (ALARP)” guidelines was employed to provide suggestions for emergency management under both normal conditions and off normal conditions. A case study of risk assessment of sheltering in the local residential houses in Xuanhan County of Sichuan Province, China was taken as an example to illustrate the proposed risk assessment process of shelter-in-place and its application in the decision-making process for emergency management.  相似文献   
386.
Urban rail network safety is a critical sector of urban public safety. However, there is no uniform standard for the safety evaluation of the urban rail network. This paper presents a novel methodology by integrating a multilevel decision tree with a fuzzy analytical approach to enhance urban rail network safety. The proposed methodology overcomes serious limitations such as subjectivity in the data and independence of the variables in decision-making processes. The proposed methodology is applied to the risk evaluation of the selected Chongqing rail transit lines and the Expo Line. The risk analysis is considered using the field data collected from these transit lines. The applied case studies confirm the general applicability of the methodology and the multilevel decision tree network. The main risk factors identified for the Chongqing rail traffic system are the terrorist threat, emergency management, and aging infrastructure which need to be investigated as a priority to mitigate risk associated with these infrastructures.  相似文献   
387.
Offshore oil production is one of the most important human productive activities. There are many risks associated with the process of constructing a subsea well, pumping oil to the platform, and transporting it to refineries via underwater pipes or oil tankers. All actions performed by workers in those operations are influenced by specific working conditions, involving the use of complex systems. Contextual factors such as high noise, low and high temperatures and hazardous chemicals are considered to be contributors to unsafe human actions in accident analysis and also give a basis for assessing human factors in safety analysis. Some failure modes are particularly dangerous and can result in severe accidents and damage to humans, the environment and material assets. Fires and explosions on oil rigs are some of the most devastating types of offshore accidents and can result in long-term consequences. The most typical root causes related to accidents include equipment failure, human error, environmental factors, work organization, training and, communication, among others. The principal objective of this study is to propose a methodological framework to identify the factors that affect the performance of operators of an offshore unit for oil processing and treatment. In this phase, an ergonomics approach based on operators' work analysis is used as a supporting tool. After identification of factors that affect the performance of operators, a decision-making model based on AHP (analytic hierarchy process) is applied to rank and weight the principal performance shaping factors (PSFs) that influence safe operations. The next step involves the use of the SHELLO model to group the main PSFs in elements named software, hardware, environment, liveware and organization. In the last phase, a relevant accident that occurred aboard a floating production storage and offloading (FPSO) vessel is analyzed. The allocation process of the factors that affect the operator's performance in risk assessment was developed through fuzzy logic and the ISO 17776 standard.  相似文献   
388.
Faults due to human errors cost the petrochemical industry billions of dollars every year and can have adverse environmental consequences. Unquantified human error probabilities exist during process state transitions performed each day by process operators using standard operating procedures. Managing the risks associated with operating procedures is an essential part of managing the overall safety risk. Additional operator training and safety education cannot eliminate all such faults due to human errors; therefore, we propose an operating procedure event tree (OPET) like analysis with branches and events specifically designed to perform risk analysis on operating procedures. The OPET method adapts event trees to analyze the risk due to human error while performing operating procedures. We consider human error scenarios during the procedure and determine the likely consequences by applying dynamic simulation. The modified event tree provides an estimate of the error frequencies.Operating procedure steps were developed, and potential operator faults were determined for two typical equipment switching procedures found in chemical plant operations. Then, dynamic simulation using Aspen HYSYS software was applied to determine the overpressure related consequences of each fault. Finally, the error frequencies resulting from those scenarios were analyzed using operating procedure event trees. We found that a typical ethylene plant gas header would overpressure with 0.6% frequency per manual dryer switch. Since dryer switches occur from every few days up to once per shift, these results suggest that dryer switching should be automated to ensure safe and environmentally friendly operation. Process dryer switching performed manually by operators opening and closing gate valves can be automated with control valves and a distributed control system. A sample distillation column was found to overpressure with 0.85% frequency per manual reflux pump switch.  相似文献   
389.
为满足基于大数据的特种设备事故推演和预防技术及平台的研发与应用,本文研究了特种设备事故(突发事件)应急处置现状和存在的问题,归纳总结出特种设备安全共性风险,设计和完善了事故响应、控制、预防等应急处置方案与应急救援体系,并进行了实例验证.同时,本文还对在应急处置平台系统上的部署和应用提出了期望.  相似文献   
390.
The recovery effectiveness for oil spills in ice conditions depends on a complex system and has not been studied in depth, especially not from a system risk control perspective. This paper aims to identify the critical aspects in the oil spill system to enable effective oil spill recovery. First, a method is developed to identify critical elements in a Bayesian Network model, based on an uncertainty-based risk perspective. The method accounts for sensitivity and the strength of evidence, which are assessed for the different Bayesian Network model features. Then, a Bayesian Network model for the mechanical oil spill recovery system is developed for the Finnish oil spill response fleet, contextualized for representative collision accident scenarios. This model combines information about representative sea ice conditions, ship-ship collisions and their associated oil outflow, the oil dispersion and spreading in the ice conditions, and the oil spill response and recovery of the fleet. Finally, the critical factors are identified by applying the proposed method to the developed oil spill response system model. The identified most critical system factors relates collision aspect: Forcing Representative Scenario, Representative Accident Location, Impact Speed, Impact Location, Impact Angle and response aspect: Response Vessel Operability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号