首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   3篇
  国内免费   19篇
废物处理   1篇
环保管理   9篇
综合类   42篇
基础理论   13篇
污染及防治   27篇
评价与监测   6篇
社会与环境   1篇
  2023年   5篇
  2022年   5篇
  2021年   1篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   7篇
  2010年   1篇
  2009年   11篇
  2008年   3篇
  2007年   8篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2002年   3篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
61.
The problem of acid deposition and its harmful effects on aquatic ecosystems has created a new branch of science that is called upon to provide the knowledge on which legislative controls can be based. However, because of the nature of existing legislation, which requires evidence of cause and effect between industrial emissions and pollution, and because of science's inability to provide this information over the short term, considerable controversy has arisen about whether sufficient information exists to warrant control measures at this time. Among those who advocate controls, there is genuine divergence of opinion about how stringent the controls must be to achieve any desired level of protection.The controversy has led to an impasse between the scientific and political participants, which is reflected in the slow pace of progress toward an effective management strategy. Resolution of the impasse, at least in the short term, may demand that science and politics rely on empirical models rather than explanatory ones. The empirical model, which is the major proposal in this article, integrates all of the major variables and many of the minor ones, and constructs a three-dimensionally curved surface capable of representing the status of any waterbody subjected to the effects of acid deposition. When suitably calibrated—a process involving the integration of knowledge and data from aquatic biology, geochemistry, meteorology, and limnology—it can be used to depict limits to the rate of acid deposition required for any level of environmental protection. Because it can generate a pictorial display of the effects of management decisions and legislative controls, the model might serve as a basis for enhancing the quality of communication among all the scientific and political participants and help to resolve many of their controversies.  相似文献   
62.
研究了泥水体系中柠檬酸-Fe(Ⅱ)/K2SO8降解敌草隆时各影响因子的作用机制,通过正交实验确定了反应的最佳操作条件为:K2SO8浓度为2.0mmol/L,Fe(Ⅱ)浓度为1.0mmol/L,柠檬酸浓度为0.5mmol/L,反应时间为120min,pH=7.0。此奈件下,0.1mmol/L敌草隆降解率可达97.6%。采用分子探针竞争实验鉴定了体系中产生的硫酸根自由基。  相似文献   
63.
为比较铬酸钡分光光度法与离子色谱法测定水中硫酸盐是否存在显著性差异,分别使用两种方法测定淮安市两个集中式生活饮用水水源地的地表水中的硫酸盐含量。其结果显示,两种方法的精密度、准确度和测定结果无显著性差异,均可作为测定生活饮用水中硫酸盐的方法。  相似文献   
64.
含硫酸盐有机废水处理问题的探讨   总被引:1,自引:0,他引:1  
俞汉青 《环境科学》1991,12(5):68-73
本文分析硫酸盐对厌氧生物处理的不利影响,即硫酸盐通过硫酸盐还原菌对厌氧发酵的第一次抑制作用和硫酸盐的还原产物——硫化氢对产甲烷菌的第二次抑制作用.讨论决定硫酸盐对厌氧生物处理影响程度的几个因素:进水COD/SO_4~(2-)、重金属离子浓度、消化液pH、厌氧污泥浓度等,并认为COD/SO_4~(2-)是其中最主要的因素;最后对处理该类废水的几种方法进行了综述.  相似文献   
65.
建立了艾士卡-离子色谱测定植物中含硫量的方法,该法利用植物样品与艾士卡试剂的混合灼烧,将植物中的硫转化为硫酸盐进行测定,再根据硫酸根的含量计算植物中含硫量。经验证,该方法检出限为0.01%,精密度为2.3%~3.9%,回收率为91.7%~104.3%,适用于植物中含硫量的测定。  相似文献   
66.
In this paper, black rice husk ashes (BRHAs), which are agrowastes from an electricity generating power plant and a rice mill, were ground and used as a partial cement replacement. The durability of mortars under sulfate attack including expansion and compressive strength loss were investigated. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 30%, and 50% by weight of binder. The water-to-binder ratios were 0.55 and 0.65. For the durability of mortar exposed to sulfate attack, 5% sodium sulfate (Na2SO4) and magnesium sulfate (MgSO4) solutions were used. As a result, when increasing the percentage replacement of BRHA, the expansion and compressive strength loss of mortar decreased. At the replacement levels of 30% and 50% of BRHA, the expansion of the mortars was less than those mixed with sulfate-resistant cement. However, the expansion of the mortars exposed to Na2SO4 was more than those exposed to MgSO4. Increasing the replacement level of BRHA tends to reduce the compressive strength loss of mortars exposed to Na2SO4 attack. In contrary, under MgSO4 attack, when increasing the replacement level of BRHA, the compressive strength loss increases from 0% to 50% in comparison to Portland cement mortar. Results show that ground BRHA can be applied as a pozzolanic material to concrete and also improve resistance to sodium sulfate attack, but it can impair resistance to magnesium sulfate attack.  相似文献   
67.
Zhuang L  Gui L  Gillham RW 《Chemosphere》2012,89(7):810-816
This study examined the role of denitrifying and sulfate-reducing bacteria in biodegradation of pentaerythritol tetranitrate (PETN). Microbial inocula were obtained from a PETN-contaminated soil. PETN degradation was evaluated using nitrate and/or sulfate as electron acceptors and acetate as a carbon source. Results showed that under different electron acceptor conditions tested, PETN was sequentially reduced to pentaerythritol via the intermediary formation of tri-, di- and mononitrate pentaerythritol (PETriN, PEDN and PEMN). The addition of nitrate enhanced the degradation rate of PETN by stimulating greater microbial activity and growth of nitrite reducing bacteria that were responsible for degrading PETN. However, a high concentration of nitrite (350 mg L−1) accumulated from nitrate reduction, consequently caused self-inhibition and temporarily delayed PETN biodegradation. In contrast, PETN degraded at very similar rates in the presence and absence of sulfate, while PETN inhibited sulfate reduction. It is apparent that denitrifying bacteria possessing nitrite reductase were capable of using PETN and its intermediates as terminal electron acceptors in a preferential utilization sequence of PETN, PETriN, PEDN and PEMN, while sulfate-reducing bacteria were not involved in PETN biodegradation. This study demonstrated that under anaerobic conditions and with sufficient carbon source, PETN can be effectively biotransformed by indigenous denitrifying bacteria, providing a viable means of treatment for PETN-containing wastewaters and PETN-contaminated soils.  相似文献   
68.
• Nano zero-valent manganese (nZVMn, Mn0) is synthesized via borohydrides reduction. • Mn0 combined with persulfate/hypochlorite is effective for Tl removal at pH 6-12. • Mn0 can activate persulfate to form hydroxyl and sulfate radicals. • Oxidation-induced precipitation and surface complexation contribute to Tl removal. • Combined Mn0-oxidants process is promising in the environmental field. Nano zero-valent manganese (nZVMn, Mn0) was prepared through a borohydride reduction method and coupled with different oxidants (persulfate (S2O82), hypochlorite (ClO), or hydrogen peroxide (H2O2)) to remove thallium (Tl) from wastewater. The surface of Mn0 was readily oxidized to form a core-shell composite (MnOx@Mn0), which consists of Mn0 as the inner core and MnOx (MnO, Mn2O3, and Mn3O4) as the outer layer. When Mn0 was added alone, effective Tl(I) removal was achieved at high pH levels (>12). The Mn0-H2O2 system was only effective in Tl(I) removal at high pH (>12), while the Mn0-S2O82 or Mn0-ClO system had excellent Tl(I) removal (>96%) over a broad pH range (4–12). The Mn0-S2O82 oxidation system provided the best resistance to interference from an external organic matrix. The isotherm of Tl(I) removal through the Mn0-S2O82 system followed the Freundlich model. The Mn0 nanomaterials can activate persulfate to produce sulfate radicals and hydroxyl radicals. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggested that oxidation-induced precipitation, surface adsorption, and electrostatic attraction are the main mechanisms for Tl(I) removal resulting from the combination of Mn0 and oxidants. Mn0 coupled with S2O82/ClO is a novel and effective technique for Tl(I) removal, and its application in other fields is worthy of further investigation.  相似文献   
69.
Biological sulfate reduction was studied in a laboratory-scale anaerobic sequential batch reactor (14 L) containing mineral coal for biomass attachment. The reactor was fed industrial wastewater with increasingly high sulfate concentrations to establish its application limits. Special attention was paid to the use of butanol in the sulfate reduction that originated from melamine resin production. This product was used as the main organic amendment to support the biological process. The reactor was operated for 65 cycles (48 h each) at sulfate loading rates ranging from 2.2 to 23.8 g SO(4)(2-)/cycle, which corresponds to sulfate concentrations of 0.25, 0.5, 1.0, 2.0 and 3.0 g SO(4)(2-) L(-1). The sulfate removal efficiency reached 99% at concentrations of 0.25, 0.5 and 1.0 g SO(4)(2-) L(-1). At higher sulfate concentrations (2.0 and 3.0 g SO(4)(2-) L(-1)), the sulfate conversion remained in the range of 71-95%. The results demonstrate the potential applicability of butanol as the carbon source for the biological treatment of sulfate in an anaerobic batch reactor.  相似文献   
70.
• Over 70% reduction of sulfate was achieved for sulfate less than 12000 mg/L. • The decrease of genes encoding (EC: 1.3.8.1) induced the accumulation of VFAs. • The sulfate reduction genes were primary carried by genus Desulfovibrio. Sulfate favored assimilatory, but inhibited dissimilatory sulfate reduction process. For comprehensive insights into the influences of sulfate on performance, microbial community and metabolic pathways in the acidification phase of a two-phase anaerobic system, a laboratory-scale acidogenic bioreactor was continuously operated to treat wastewater with elevated sulfate concentrations from 2000 to 14000 mg/L. The results showed that the acidogenic bioreactor could achieve sulfate reduction efficiency of greater than 70% for influent sulfate content less than 12000 mg/L. Increased sulfate induced the accumulation of volatile fatty acids (VFAs), especially propionate and butyrate, which was the primary negative effects to system performance under the high-sulfate environment. High-throughput sequencing coupled with PICRUSt2 uncovered that the accumulation of VFAs was triggered by the decreasing of genes encoding short-chain acyl-CoA dehydrogenase (EC: 1.3.8.1), regulating the transformation of propanoyl-CoA to propenoyl-CoA and butanoyl-CoA to crotonyl-CoA of propionate and butyrate oxidation pathways, which made these two process hardly proceed. Besides, genes encoding (EC: 1.3.8.1) were mainly carried by order Clostridiales. Desulfovibrio was the most abundant sulfate-reducing bacteria and identified as the primary host of dissimilatory sulfate reduction functional genes. Functional analysis indicated the dissimilatory sulfate reduction process predominated under a low sulfate environment, but was not favored under the circumstance of high-sulfate. With the increase of sulfate, the assimilatory sulfate reduction process finally overwhelmed dissimilatory as the dominant sulfate reduction pathway in acidogenic bioreactor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号