首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1615篇
  免费   135篇
  国内免费   135篇
安全科学   217篇
废物处理   31篇
环保管理   760篇
综合类   313篇
基础理论   276篇
污染及防治   131篇
评价与监测   82篇
社会与环境   44篇
灾害及防治   31篇
  2023年   22篇
  2022年   22篇
  2021年   40篇
  2020年   50篇
  2019年   47篇
  2018年   27篇
  2017年   52篇
  2016年   59篇
  2015年   69篇
  2014年   67篇
  2013年   88篇
  2012年   62篇
  2011年   98篇
  2010年   57篇
  2009年   126篇
  2008年   83篇
  2007年   80篇
  2006年   61篇
  2005年   81篇
  2004年   59篇
  2003年   69篇
  2002年   63篇
  2001年   50篇
  2000年   62篇
  1999年   52篇
  1998年   42篇
  1997年   27篇
  1996年   38篇
  1995年   27篇
  1994年   19篇
  1993年   18篇
  1992年   14篇
  1991年   11篇
  1990年   9篇
  1989年   15篇
  1988年   11篇
  1987年   9篇
  1986年   7篇
  1985年   7篇
  1984年   5篇
  1983年   6篇
  1982年   10篇
  1981年   9篇
  1980年   13篇
  1979年   15篇
  1978年   11篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
排序方式: 共有1885条查询结果,搜索用时 203 毫秒
71.
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite.  相似文献   
72.
This research presents a method to determine the maximum potential for the capturing of solar radiation on the rooftop of buildings in an urban environment. This involves the modeling of solar energy potential and comparison to historical building energy demand profiles through the use of 3-D solar simulation software tools and geographic information systems (GIS). The objective is to accurately identify the amount of surface area that is suitable for solar photovoltaic (PV) installations and to estimate the hourly PV electricity generation potential of existing building rooftops in an urban environment. This study demonstrates a viable approach for modeling urban solar energy and offers valuable information for electricity distributors, policy makers, and urban energy planners to facilitate the substantial design of a green built environment. The developed methodology is comprised of three main sections: (1) determination of suitable rooftop area, (2) determination of the amount of incident solar radiation available per rooftop, and (3) estimation of hourly solar PV electricity generation potential. A case study was performed using this method for Ryerson University, located in Toronto, Canada. It was found that solar PV could supply up to 19% of the study area’s electricity demands during peak consumption hours. The potential benefits of solar PV was also estimated based upon hourly greenhouse gas emission intensity factors as well as Time-of-Use (TOU) savings through the Ontario Feed-in-Tariff (FIT) program, which allows for better representation of the positive impacts of solar technologies.  相似文献   
73.
在阐述了宁夏地区光伏发电发展的优势及发展现状的基础上,分析了光伏发电开发利用对宁夏生态环境产生的积极和消极的影响,并为降低消极影响提出了相应的对策;为了定量直观的评估光伏发电积极影响和消极影响所产生的环境效益,分别建立了节能减排、防风固沙和土地增值、景观效应、植被恢复费用、噪声污染超标罚款、光污染费用等价值模型及光伏发电总的生态环境效益价值模型;最后以中电投宁夏能源铝中卫香山光伏电站为例进行计算验证,结果表明模型的合理性和准确性,同时光伏电站的节能减排效益显著。相对于传统的火力发电,表现了优越的环境效益。  相似文献   
74.
Introduction: For many reasons, including a lack of adequate safety training and education, U.S. adolescents experience a higher rate of job-related injury compared to adult workers. Widely used social-psychological theories in public health research and practice, such as the theory of planned behavior, may provide guidance for developing and evaluating school-based interventions to prepare adolescents for workplace hazards and risks. Method: Using a structural equation modeling approach, the current study explores whether a modified theory of planned behavior model provides insight on 1,748 eighth graders’ occupational safety and health (OSH) attitude, subjective norm, self-efficacy and behavioral intention, before and after receiving instruction on a free, national young worker safety and health curriculum. Reliability estimates for the measures were produced and direct and indirect associations between knowledge and other model constructs assessed. Results: Overall, the findings align with the theory of planned behavior. The structural equation model adequately fit the data; most path coefficients are statistically significant and knowledge has indirect effects on behavioral intention. Confirmatory factor analyses suggest that the knowledge, attitude, self-efficacy, and behavioral intention measures each reflect a unique dimension (reliability estimates ≥0.86), while the subjective norm measure did not perform adequately. Conclusion: The findings presented provide support for using behavioral theory (specifically a modified theory of planned behavior) to investigate adolescents’ knowledge, perceptions, and behavioral intention to engage in safe and healthful activities at work, an understanding of which may contribute to reducing the downstream burden of injury on this vulnerable population—the future workforce. Practical application: Health behavior theories, commonly used in the social and behavioral sciences, have utility and provide guidance for developing and evaluating OSH interventions, including those aimed at preventing injuries and promoting the health and safety of adolescent workers in the U.S., who are injured at higher rates than are adults.  相似文献   
75.
Safety assessment has a primary role in hazardous operations. Most studies on safety assessment focus on risk and accident modeling, in which safety is absent. These top-down methods are highly dependent on the occurred accidents to establish accidental scenarios, which may make the assessment approach lagging behind the evolving modern systems. Moreover, this “special to general” logic is scientifically suspect in safety assessment. There is a call for the development of safety assessment methods in the presence of system safety to complement risk-focused safety analysis. These methods should provide a framework based on a bottom-up approach to examine system safety from the operational perspective. This paper has attempted to provide a potential solution. In particular, a novel concept of safety entropy is proposed to integrate with The Functional Resonance Analysis Method (FRAM), which is used to form the qualitative understanding of a system. A formula consisted of safety entropy, functional conformability, and system complexity has been established to determine the spontaneity of the safety state-changing process. The proposed method is applied to the safety assessment of a propane feed-control system. The results show the applicability of the method. Nevertheless, the model still needs to be further improved to fulfill better support for safety-related decision problems.  相似文献   
76.
为“挖掘”输油泵机组风险根源,降低设备预知性维护难度,结合输油泵多准则风险评价,提出1种基于等级全息建模的输油泵机组风险根源辨识方法,运用等级全息建模方法将输油泵系统分解为泵体结构、管理因素、环境因素、操作因素、技术因素、运行因素、设备安装7个子系统进行定性和定量分析。结果表明:相比危险与可操作性分析(HAZOP)、事故树分析(FTA)等传统风险辨识方法,等级全息建模(HHM)对轴承等关键部件以及压力等运行参数的监测更为深入,能够有效辨识输油泵机组高风险情景,提升输油泵的风险辨识效率。  相似文献   
77.
In recent years, significant progress has been made to ensure that process industries are among the safest workplaces in the world. However, with the increasing complexity of existing technologies and new problems brought about by emerging technologies, a strong need still exists to study the fundamentals of process safety and predict possible scenarios. This is attained by conducting the corresponding consequence modeling and risk assessments. As a result of the continuous advancement of Computational Fluid Dynamics (CFD) tools and exponentially increased computation capabilities along with better understandings of the underlying physics, CFD simulations have been applied widely in the areas of process safety and loss prevention to gain new insights, improve existing models, and assess new hazardous scenarios. In this review, 126 papers from 2010 to 2020 have been included in order to systematically categorize and summarize recent applications of CFD for fires, explosions, dispersions of flammable and toxic materials from accidental releases, incident investigations and reconstructions, and other areas of process safety. The advantages of CFD modeling are discussed and the future of CFD applications in this research area is outlined.  相似文献   
78.
Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.  相似文献   
79.
This study explores the viability of using simulated monthly runoff as a proxy for landscape‐scale surface‐depression storage processes simulated by the United States Geological Survey’s National Hydrologic Model (NHM) infrastructure across the conterminous United States (CONUS). Two different temporal resolution model codes (daily and monthly) were run in the NHM with the same spatial discretization. Simulated values of daily surface‐depression storage (treated as a decimal fraction of maximum volume) as computed by the daily Precipitation‐Runoff Modeling System (NHM‐PRMS) and normalized runoff (0 to 1) as computed by the Monthly Water Balance Model (NHM‐MWBM) were aggregated to monthly and annual values for each hydrologic response unit (HRU) in the CONUS geospatial fabric (HRU; n = 109,951) and analyzed using Spearman’s rank correlation test. Correlations between simulated runoff and surface‐depression storage aggregated to monthly and annual values were compared to identify where which time scale had relatively higher correlation values across the CONUS. Results show Spearman’s rank values >0.75 (highly correlated) for the monthly time scale in 28,279 HRUs (53.35%) compared to the annual time scale in 41,655 HRUs (78.58%). The geographic distribution of HRUs with highly correlated monthly values show areas where surface‐depression storage features are known to be common (e.g., Prairie Pothole Region, Florida).  相似文献   
80.
Gridded precipitation datasets are becoming a convenient substitute for gauge measurements in hydrological modeling; however, these data have not been fully evaluated across a range of conditions. We compared four gridded datasets (Daily Surface Weather and Climatological Summaries [DAYMET], North American Land Data Assimilation System [NLDAS], Global Land Data Assimilation System [GLDAS], and Parameter‐elevation Regressions on Independent Slopes Model [PRISM]) as precipitation data sources and evaluated how they affected hydrologic model performance when compared with a gauged dataset, Global Historical Climatology Network‐Daily (GHCN‐D). Analyses were performed for the Delaware Watershed at Perry Lake in eastern Kansas. Precipitation indices for DAYMET and PRISM precipitation closely matched GHCN‐D, whereas NLDAS and GLDAS showed weaker correlations. We also used these precipitation data as input to the Soil and Water Assessment Tool (SWAT) model that confirmed similar trends in streamflow simulation. For stations with complete data, GHCN‐D based SWAT‐simulated streamflow variability better than gridded precipitation data. During low flow periods we found PRISM performed better, whereas both DAYMET and NLDAS performed better in high flow years. Our results demonstrate that combining gridded precipitation sources with gauge‐based measurements can improve hydrologic model performance, especially for extreme events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号