首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1063篇
  免费   124篇
  国内免费   696篇
安全科学   66篇
废物处理   112篇
环保管理   96篇
综合类   1086篇
基础理论   170篇
污染及防治   323篇
评价与监测   25篇
社会与环境   2篇
灾害及防治   3篇
  2023年   11篇
  2022年   25篇
  2021年   27篇
  2020年   44篇
  2019年   57篇
  2018年   46篇
  2017年   45篇
  2016年   58篇
  2015年   94篇
  2014年   104篇
  2013年   104篇
  2012年   132篇
  2011年   110篇
  2010年   99篇
  2009年   118篇
  2008年   75篇
  2007年   144篇
  2006年   124篇
  2005年   93篇
  2004年   63篇
  2003年   55篇
  2002年   51篇
  2001年   43篇
  2000年   30篇
  1999年   22篇
  1998年   33篇
  1997年   22篇
  1996年   11篇
  1995年   6篇
  1994年   5篇
  1993年   18篇
  1992年   3篇
  1991年   5篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有1883条查询结果,搜索用时 62 毫秒
951.
• Explaintheadsorption, uptake and transmembrane transport of PAHs by bacteria. • Analyze functional regulation of membrane proteins inthe transmembrane transport. • Proteomics technology such as iTRAQ labeling was used to access expressed proteins. • Single cell analysis technology wereused to study the morphological structure. In recent years, increasing research has been conducted on transmembrane transport processes and the mechanisms behind the microbial breakdown of polycyclic aromatic hydrocarbons (PAHs), including the role of membrane proteins in transmembrane transport and the mode of transmission. This article explains the adsorption, uptake and transmembrane transport of PAHs by bacteria, the regulation of membrane protein function during the transmembrane transport. There are three different regulation mechanisms for uptake, depending on the state and size of the oil droplets relative to the size of the microbial cells, which are (i) direct adhesion, (ii) emulsification and pseudosolubilization, and (iii) interfacial uptake. Furthermore, two main transmembrane transport modes are introduced, which are (i) active transport and (ii) passive uptake and active efflux mechanism. Meanwhile, introduce the proteomics and single cell analysis technology used to address these areas of research, such as Isobaric tags for relative and absolute quantitation (iTRAQ) technology and Nano Secondary ion mass spectrometry (Nano-SIMS). Additionally, analyze the changes in morphology and structure and the characteristics of microbial cell membranes in the process of transmembrane transport. Finally, recognize the microscopic mechanism of PAHs biodegradation in terms of cell and membrane proteins are of great theoretical and practical significance for understanding the factors that influence the efficient degradation of PAHs contaminants in soil and for remediating the PAHs contamination in this area with biotechnology.  相似文献   
952.
• Mesoporous silica nanoparticle was modified with 4-triethoxysilylaniline. • AMSN-based TFN-RO membranes were prepared for seawater desalination. • Water transport capability of the AMSN was limited by polyamide. • Polyamide still plays a key role in permeability of the TFN RO membranes. Mesoporous silica nanoparticles (MSN), with higher water permeability than NaA zeolite, were used to fabricate thin-film nanocomposite (TFN) reverse osmosis (RO) membranes. However, only aminoalkyl-modified MSN and low-pressure (less than 2.1 MPa) RO membrane were investigated. In this study, aminophenyl-modified MSN (AMSN) were synthesized and used to fabricate high-pressure (5.52 MPa) RO membranes. With the increasing of AMSN dosage, the crosslinking degree of the aromatic polyamide decreased, while the hydrophilicity of the membranes increased. The membrane morphology was maintained to show a ridge-and-valley structure, with only a slight increase in membrane surface roughness. At the optimum conditions (AMSN dosage of 0.25 g/L), when compared with the pure polyamide RO membrane, the water flux of the TFN RO membrane (55.67 L/m2/h) was increased by about 21.6%, while NaCl rejection (98.97%) was slightly decreased by only 0.29%. However, the water flux of the membranes was much lower than expected. We considered that the enhancement of RO membrane permeability is attributed to the reduction of the effective thickness of the PA layer.  相似文献   
953.
• Effects of metabolic uncouplers addition on sludge reduction were carried out. • TCS addition effectively inhibited ATP synthesis and reduced sludge yield. • The effluent quality such as TOC and ammonia deteriorated but not significantly. • Suitable dosage retarded biofouling during sludge water recovery by UF membrane. Energy uncoupling is often used for sludge reduction because it is easy to operate and does not require a significant amount of extra equipments (i.e. no additional tank required). However, over time the supernatant extracted using this method can deteriorate, ultimately requiring further treatment. The purpose of this study was to determine the effect of using a low-pressure ultrafiltration membrane process for sludge water recovery after the sludge had undergone an energy uncoupling treatment (using 3,3′,4′,5-tetrachlorosalicylanilide (TCS)). Energy uncoupling was found to break apart sludge floc by reducing extracellular polymeric substances (EPS) and adenosine triphosphate (ATP) content. Analysis of supernatant indicated that when energy uncoupling and membrane filtration were co-applied and the TCS dosage was below 30 mg/L, there was no significant deterioration in organic component removal. However, ammonia and phosphate concentrations were found to increase as the concentration of TCS added increased. Additionally, due to low sludge concentrations and EPS contents, addition of 30–60 mg/L TCS during sludge reduction increased the permeate flux (two times higher than the control) and decreased the hydraulic reversible and cake layer resistances. In contrast, high dosage of TCS aggravated membrane fouling by forming compact fouling layers. In general, this study found that the co-application of energy uncoupling and membrane filtration processes represents an effective alternative method for simultaneous sludge reduction and sludge supernatant recovery.  相似文献   
954.
• A high-performance electrode was prepared with super-aligned carbon nanotubes. • SACNT/AC electrode achieved a ~100% increase in desalination capacity and rate. • SACNT/AC electrode achieved a ~26% increase in charge efficiency. • CUF process with SACNT/AC achieved an up to 2.43-fold fouling reduction. • SACNT/AC imparts overall improved water purification efficiency. The practical application of the capacitive deionization (CDI) enhanced ultrafiltration (CUF) technology is hampered due to low performance of electrodes. The current study demonstrated a novel super-aligned carbon nanotube (SACNT)/activated carbon (AC) composite electrode, which was prepared through coating AC on a cross-stacked SACNT film. The desalination capability and water purification performance of the prepared electrode were systematically investigated at different applied voltages (0.8–1.2 V) with a CDI system and a CUF system, respectively. In the CDI tests, as compared with the control AC electrode, the SACNT/AC electrode achieved an approximately 100% increase in both maximum salt adsorption capacity and average salt adsorption rate under all the applied voltage conditions, demonstrating a superior desalination capability. Meanwhile, a conspicuous increase by an average of ~26% in charge efficiency was also achieved at all the voltages. In the CUF tests, as compared with the control run at 0 V, the treatment runs at 0.8, 1.0, and 1.2 V achieved a 2.40-fold, 2.08-fold, and 2.43-fold reduction in membrane fouling (calculated according to the final transmembrane pressure (TMP) data at the end of every purification stage), respectively. The average TMP increasing rates at 0.8, 1.0, and 1.2 V were also roughly two times smaller than that at 0 V, indicating a dramatical reduction of membrane fouling. The SACNT/AC electrode also maintained its superior desalination capability in the CUF process, resulting in an overall improved water purification efficiency.  相似文献   
955.
乳化液膜法处理化工废水的进展   总被引:7,自引:0,他引:7  
扼要介绍了液膜分离的机理及其在废水处理方面所具有的特点,并举例说明了我国在液膜法处理化工废水方面的研究进展。  相似文献   
956.
With data from in vitro and in situ investigations, we developed a mathematical model to describe cellular uptake of uranium and arsenic in solution by living Lemna gibba under homeostatic regulation. The model considers the ability of healthy cells to resist accumulation of toxic metal species by regulating physicochemical properties of the cell membrane. In the bulk solution, the ratio of the total amounts of bioavailable metal ions to the metal ions uptake by the cells is very high. Consequently, the main rate-limiting processes of uptake are the biosorption kinetics on both external and internal surfaces at the biological interface, and the transport of the metal ions across the cell membrane. The model prediction correlates well with uptake results from field and microcosm experiments for uranium and arsenic by L. gibba, a model ecotoxicological test organism.  相似文献   
957.
膜法处理含油废水研究进展   总被引:10,自引:0,他引:10  
介绍了含油废水的来源、危害及其一般的处理方法,概述了国内外处理含油废水的膜分离技术——微滤、超滤、反渗透及膜法联合处理工艺的研究现状。对膜污染与预防问题进行了探讨,指出了膜法联合处理工艺是今后处理含油废水的研究方向,而研制抗污染、净化效果好、成本低廉的新型功能有机高分子过滤吸附材料也是含油废水处理领域的一项重要工作。  相似文献   
958.
外置式超滤膜生物反应器处理油田废水   总被引:6,自引:0,他引:6  
采用外置式超滤膜生物反应器处理油田废水,废水中的有机物被生物接触氧化池填料上形成生物膜的微生物降解,然后通过中空纤维超滤膜进行过滤,出水中油的质量浓度在1m g/L以下,悬浮物的质量浓度在3m g/L以下。考察了细菌的筛选、生物膜的培养驯化及压力、温度等对膜通量的影响。实验结果表明,筛选出的3株高效原油降解菌有很好的除油效果;生物膜经培养驯化成熟后,生物接触氧化池内细菌浓度为1×106个/mL;膜通量随压力和温度的适当提高而增加,适宜的操作压力为0.08M Pa,温度为20~28℃。分别用超滤水反冲洗、稀碱、稀酸、杀菌剂(如N aC lO溶液)和清水冲洗被污染的超滤膜,可使膜通量恢复到新膜的98%以上;在生物除油工序后增加沉淀池,膜污染可减少约7.77%。  相似文献   
959.
针对污泥混合液的过滤性能,在运行条件相同的情况下对膜生物反应器(MBR)与传统活性污泥法(CAS)进行比较.实验结果表明:MBR工艺污泥混合液的过滤阻力是CAS工艺过滤阻力的2~3倍;2种工艺悬浮液过滤阻力占总阻力的90%左右.过滤阻力分布实验表明,沉积层阻力占CAS工艺总阻力的87.30%,占MBR工艺总阻力的94.18%.  相似文献   
960.
IntroductionThe combination of membrane separation withthe process of biological reactor is called membranebioreactor (MBR). Studies on MBRs have receivedconsiderable attentions due to the deterioration of thewater environment and the advantages they poss…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号