全文获取类型
收费全文 | 258篇 |
免费 | 35篇 |
国内免费 | 156篇 |
专业分类
安全科学 | 14篇 |
废物处理 | 41篇 |
环保管理 | 26篇 |
综合类 | 196篇 |
基础理论 | 51篇 |
污染及防治 | 100篇 |
评价与监测 | 17篇 |
社会与环境 | 4篇 |
出版年
2023年 | 7篇 |
2022年 | 10篇 |
2021年 | 5篇 |
2020年 | 10篇 |
2019年 | 12篇 |
2018年 | 15篇 |
2017年 | 18篇 |
2016年 | 31篇 |
2015年 | 31篇 |
2014年 | 26篇 |
2013年 | 40篇 |
2012年 | 33篇 |
2011年 | 23篇 |
2010年 | 17篇 |
2009年 | 24篇 |
2008年 | 16篇 |
2007年 | 15篇 |
2006年 | 19篇 |
2005年 | 16篇 |
2004年 | 15篇 |
2003年 | 8篇 |
2002年 | 22篇 |
2001年 | 7篇 |
2000年 | 10篇 |
1999年 | 8篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1988年 | 1篇 |
排序方式: 共有449条查询结果,搜索用时 0 毫秒
21.
玉米秸秆活性炭的制备及其吸附动力学研究 总被引:2,自引:0,他引:2
以玉米秸秆为原材料,采用ZnCl2活化法制备玉米秸秆活性炭,吸附次甲基蓝染料废水,进行动力学分析。本实验用Langmuir和Freundlich模型对吸附等温线进行拟合,结果表明,玉米秸秆活性炭对次甲基蓝的吸附与Langmuir方程拟合良好,R2=0.9857。采用Lagergren准一级速率模型、Lagergren准二级速率模型、Bangham动力学方程和Elovich动力学方程分别对秸秆活性炭吸附次甲基蓝溶液进行吸附动力学拟合,通过分析得出吸附过程与Lagergren准二级速率模型拟合最好,R2=0.9979。秸秆活性炭对次甲基蓝的最大吸附量达到909.09 mg/g,具有很高的吸附能力。 相似文献
22.
酸改性泥炭对含亚甲基蓝废水的吸附净化作用 总被引:1,自引:0,他引:1
采用稀硝酸对泥炭进行改性处理获得酸改性泥炭,并将其用于处理亚甲基蓝废水。考察初始溶液pH、接触时间、酸改性泥炭投加量和亚甲基蓝溶液初始浓度等因素对酸改性泥炭吸附效果影响。结果表明,初始溶液pH、接触时间、酸改性泥炭投加量和亚甲基蓝溶液初始浓度对酸改性泥炭吸附性能都有一定的影响。在最佳的反应条件下(接触时间为60 min,反应温度为35℃,初始溶液pH为7.12,酸改性泥炭投加量为2 g),亚甲基蓝去除率可达90.88%,其吸附较好地符合Freundlich和Langmuir等温方程,拟合相关系数均大于0.9。通过热力学计算发现,ΔG<0、ΔS>0,表明该吸附反应是自发的、吸热反应。且该吸附过程符合准二级动力学方程(R2=0.98)。 相似文献
23.
24.
KOH活化花生壳生物质炭对亚甲基蓝吸附性能研究 总被引:2,自引:0,他引:2
以花生壳生物质炭(P-BC)为原料,KOH为活化剂,采用化学活化法制得活化生物质炭(K-BC),通过考察对亚甲基蓝的吸附性能,研究了花生壳生物质炭的最佳活化条件,并利用N2吸附-脱附实验、SEM等对最佳活化条件下的生物质炭进行表征.结果表明,K-BC活化的最佳条件为碱炭比为1.5:1,活化温度为800℃,活化时间为90 min,此时K-BC的比表面积达到597.93 m2/g,总孔容达到0.76 cm3/g.并考察了亚甲基蓝初始浓度、pH等对K-BC吸附亚甲基蓝的影响,随着初始浓度的增加,吸附平衡时间显著延长,亚甲基蓝去除率显著降低;当pH=6时,K-BC对亚甲基蓝的吸附量最大;K-BC对亚甲基蓝的吸附动力学曲线符合伪二阶动力学模型,吸附平衡时K-BC对亚甲基蓝的吸附能力为80~149.95 mg/g. 相似文献
25.
滇池草海蓝藻清除应急措施总体方案 总被引:5,自引:0,他引:5
我国首例大型湖泊蓝藻清除工程中,制订了由湖泊应急治理措施、水资源应急调控措施和行政管理强化措施构成的注重时空需要、突出治标应急和多专业、多技术相互配合的综合应急方案。 相似文献
26.
The photocatalytic degradation of a dye derivative, C.I. disperse blue 1 (1), has been investigated under UV light irradiation in the presence of TiO2 and H2O2 under a variety of conditions. The degradation was studied by monitoring the change in substrate concentration employing UV spectroscopic technique as a function of irradiation time. The degradation was studied under different conditions such as different types of TiO2, reaction pH, catalyst and substrate concentration containing hydrogen peroxide (H2O2), besides molecular oxygen in the presence of TiO2. The degradation of dye was also investigated under sunlight and the efficiency of degradation was compared with that of the artificial light source. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 was found to be more efficient for the degradation of the dye. 相似文献
27.
The fly ash treated by H2SO4 was used as a low-cost adsorbent for the removal of a typical dye, methylene blue, from aqueous solution. An increase in the specific surface area and dye-adsorption capacity was observed after the acid treatment. The adsorption isotherm and kinetics of the treated fly ash were studied. The experimental results were fitted using Langmuir and Freundlich isotherms. It shows that the Freundlich isotherm is better in describing the adsorption process. Two kinetic models, pseudo-first order and pseudo-second order, were employed to analyze the kinetic data. It was found that the pseudo-second-order model is the better choice to describe the adsorption behavior. The thermodynamic study reveals that the enthalpy (ΔH0) value is positive (5.63 kJ/mol), suggesting an endothermic nature of the adsorption. 相似文献
28.
29.
粉煤灰吸附去除弱酸性艳蓝印染废水 总被引:3,自引:0,他引:3
利用粉煤灰对弱酸性艳蓝印染废水进行了处理。研究表明:粉煤灰的粒径、灰水比、废水pH值以及振荡吸附时间对粉煤灰的吸附能力均有较大影响。在以下工艺条件下:20℃,粉煤灰的粒径200目,灰水比为1:30,pH为2.0,振荡吸附2.5h,弱酸性艳蓝印染废水经粉煤灰处理后,COD值由576mg/L降至71mg/L,COD去除率可达87.7%:废水色度可从10000倍降为50倍,色度的去除率达99.5%,出水pH为6.5。出水水质达到了国家印染废水一级排放标准(GB4287—92)。 相似文献
30.
分析了应用亚甲基蓝分光光度(GB/T16489-1996)测定废水硫化物测试过程中不确定度影响因素,主要来源为硫化物标准溶液、标准曲线拟合、随机效应、分光光度计和取样体积这五部分。本测量合成相对标准不确定度0.025 9;其中由测定样品质量引入的不确定度为0.024 7;由样品体积引入的不确定度为0.007 7。本次废水中硫化物测量结果为:0.110±0.006 mg/L,k=2(包含概率约为95%)。 相似文献