首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
  国内免费   12篇
废物处理   1篇
环保管理   1篇
综合类   18篇
基础理论   14篇
污染及防治   6篇
评价与监测   2篇
社会与环境   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   7篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有44条查询结果,搜索用时 531 毫秒
11.
Field experiment on 10 ha area of fly ash dump was conducted to restore and revegetate it using biological interventions, which involves use of organic amendment, selection of suitable plant species along with specialized nitrogen fixing strains of biofertilizer. The results of the study indicated that amendment with farm yard manure at 50 t/ha improved the physical properties of fly ash such as maximum water holding capacity from 40.0 to 62.42% while porosity improved from 56.78 to 58.45%. The nitrogen content was increased by 4.5 times due to addition of nitrogen fixing strains of Bradyrhizobium and Azotobacter species, while phosphate content was increased by 10.0 times due to addition of VAM, which helps in phosphate immobilization. Due to biofertilizer inoculation different microbial groups such as Rhizobium, Azotobacter and VAM spores, which were practically absent in fly ash improved to 7.1 × 107, 9.2 × 107 CFU/g and 35 VAM spores/10 g of fly ash, respectively. Inoculation of biofertilizer and application of FYM helped in reducing the toxicity of heavy metals such as cadmium, copper, nickel and lead which were reduced by 25, 46, 48 and 47%, respectively, due to the increased organic matter content in the fly ash which complexes the heavy metals thereby decreasing the toxicity of metals. Amendment of fly ash with FYM and biofertilizer helped in profuse root development showing 15 times higher growth in Dendrocalamus strictus plant as compared to the control. Thus amendment and biofertilizer application provided better supportive material for anchorage and growth of the plant.  相似文献   
12.
A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg−1) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake.  相似文献   
13.
A greenhouse study was conducted as a completely randomised design in a factorial arrangement to assess how inoculation of AMF (arbuscular mycorrhizal fungus) and application of EDTA (ethylenediaminetetracetic acid) as biological and chemical amendments can affect the Ni (nickel) phytoremediation in Ni-polluted soils using sunflower plant. The results showed that the inoculation of AMF increased root colonisation while applying EDTA and high level of Ni decreased it. Microbial incubation has a positive effect on both shoot and root dry yields; however, co-application of Ni and EDTA demoted the growth rate. Shoot nutrients uptake of plants decreased as Ni levels increased. In inoculated plants, shoot uptake of Zn, Fe and Mn was higher in all Ni levels than non-inoculated plants. Ni uptake in plant shoots and roots increased with applying both AMF and EDTA. However, the mean Ni concentration and uptake in inoculated plants along with applying EDTA are higher in sunflower shoots than in roots. As Ni levels increased, Ni extraction and uptake efficiencies increased; it can be concluded co-application of EDTA and AMF was effective in increasing phytoextraction potential of sunflower plants in Ni-contaminated sites. This study highlights that AMF could be suitable for cleaning Ni-polluted areas and it could significantly contribute to phytoremediation technology.  相似文献   
14.
Diverse forms of microorganisms present in the soil and near the roots of plants, which play a vital role in numerous physiological processes, have attracted the attention of scientists. The dynamic microbial associations may be saprophytic, pathogenic, or symbiotic. The most widespread symbiosis of plants is the mycorrhizal association between root-inhabiting fungi and the feeder roots of plants. The present study was conducted to study the effects of arbuscular mycorrhizal fungi on mineral nutrition of Vigna unguiculata and Abelmoschus esculentus. The experiment comprised of uninoculated seedlings and seedlings inoculated with Glomus mosseae. The chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, protein, nitrate, nitrogen, and phosphorus content showed an increase in vesicular arbuscular mycorrhiza fungus-treated seedlings compared to non-mycorrhizal plants. The total soluble sugars and soluble starch content in leaves of all selected plant species in the present study showed a decrease in mycorrhizal seedlings compared to non-mycorrhizal seedlings.  相似文献   
15.
We grew leek (Allium porrum) in soils of two shooting ranges heavily contaminated with heavy metals in the towns of Zuchwil and Oberuzwil in Switzerland as a bioassay to test theactivity of arbuscular mycorrhizal (AM) fungi in these soils.Soil samples were taken from (1) front of the shooting house(HOUSE), (2) the area between house and target (FIELD) and (3) the berm (BACKSTOP). Samples of Ribwort plantain (Plantagolanceolata) growing naturally within the shooting ranges werealso collected and the colonization of its roots by mycorrhizalfungi was measured. The number of AM spores in the soils wassignificantly reduced concomitant with the increase in thedegree of soil contamination with metals. In Zuchwil,mycorrhizal fungi equally colonized roots of Ribwort plantainsampled from BACKSTOP and HOUSE. In Oberuzwil, however, plantsfrom BACKSTOP had lower colonization when compared with thosesampled from HOUSE. Colonization of leek was strongly reducedin the BACKSTOP soil of Zuchwil and slightly reduced in theBACKSTOP soil of Oberuzwil when compared with plants grown inrespective HOUSE soil. Concentrations of Cd, Cr, Cu, Ni, Pb andZn in the leaves of leek grown in the BACKSTOP soil was withinthe range considered toxic for human consumption. This pointsto the high degree of bio-availability of these metal in thesesoils. Significant decrease in the number of mycorrhizal sporesin the BACKSTOP soils in Zuchwil and the low colonization ofleek roots grown in these soils point to possible changes inthe species diversity of mycorrhizal fungi in these soils.  相似文献   
16.
石斛气生的兰科菌根组织结构及其对御旱研究   总被引:1,自引:0,他引:1  
基于过去对铁皮石斛(Dendrobium candidum Wall.Ex Lindl.)气生的兰科菌根适应干旱环境胁迫机理的研究鲜为涉及,现开展了培养基质的不同水分质量分数(W(水)1=43.6%、16.8%、5.5%)对兰科菌根的外部形态以及内部组织结构影响的研究。研究结果表明:基质水分质量分数降低使石斛菌根外部形态发生多样变化;随着基质水分质量分数的不断降低,石斛的生长受到显著的抑制。当基质水分质量分数为5.5%时,石斛的多数生长指标均小于其它处理,但是根冠比(R/S)增加显著,高达2.22;通过不同切片多重镜检测定和图像分析,发现菌根的形态结构产生了天然的适应突变,独特的根被组织细胞层数多达5层以上,细胞壁相对加厚,细胞腔内网、羽状结构比其它两处理明显增多,石斛菌根通过形态结构的改变来适应水分胁迫并维持其生长发育,石斛菌根组织结构的这些改变大大提高了石斛御旱的能力;水分质量分数高低与菌根感染率呈负相关,越是干旱条件菌根真菌繁衍越活跃,菌丝团结构相持时间越长,菌根的这些适应性响应都提高了石斛的抗旱能力。  相似文献   
17.
To understand the roles of mycorrhiza in metal speciation in the rhizosphere and the impact on increasing host plant tolerance against excessive heavy metals in soil, maize ( Zea mays L. ) inoculated with arbuscular mycorrhizal fungus ( Glomus mosseae) was cultivated in heavy metal contaminated soil. Speciations of copper, zinc and lead in the soil were analyzed with the technique of sequential extraction. The results showed that, in comparison to the bolked soil, the exchangeable copper increased from 26% to 43% in non-infected and AM-infected rhizoshpere respectively; while other speciation (organic, carbonate and Fe-Mn oxide copper) remained constant and the organic bound zinc and lead also increased but the exchangeable zinc and lead were undetectable. The organic bound copper, zinc end lead were higher by 15%, 40% and 20%, respectively, in the rhizosphere of arbuscular mycorrhiza infected maize in comparison to the non-infected maize. The results might indicate that mycorrhiza could protect its host plants from the phytotoxicity of excessive copper, zinc and lead by changing the speciation from bio-available to the non-bio-available form. The fact that copper and zinc accumulation in the roots and shoots of mycorrhia infected plants were significantly lower than those in the non-infected plants might also suggest that mycorrhiza efficiently restricted excessive copper and zinc absorptions into the host plants. Compared to the non-infected seedlings, the lead content of infected seedlings was 60% higher in shoots. This might illustrate that mycorrhiza have a different mechanism for protecting its host from excessive lead phytotoxicity by chelating lead in the shoots.  相似文献   
18.
王鹏腾  刁晓君  王曙光 《环境科学》2012,33(10):3667-3674
以臭氧敏感性不同的2种基因型(O3敏感型:S156;O3耐受型:R123)矮菜豆(Phaseolus vulgaris L.)为宿主植物,在模拟的大气臭氧浓度升高环境中研究臭氧胁迫对2种基因型植物的AM结构和球囊霉素蛋白产生的影响,旨在了解大气臭氧浓度升高对AM真菌生长和AM结构形成的影响.结果表明,与自然大气臭氧水平(20 nL.L-1)相比,臭氧浓度升高(70nL.L-1)显著降低了S156和R123植物的菌根侵染率,特别是S156植物,下降了43.6%.臭氧浓度升高明显影响了2种基因型植物的AM结构组成,表现在根室和菌丝室外生菌丝量、单位根长丛枝数的大幅下降,以及根室和菌丝室孢子数的显著增加,特别是S156植物变化更为明显;但2种基因型植物的单位根长泡囊数随臭氧浓度变化不显著.臭氧浓度升高对2种基因型植物的菌根际和菌丝际总球囊霉素蛋白量影响不显著,但导致菌根际和菌丝际的易提取球囊霉素蛋白量大幅增加;不过2种基因型植物间差异不显著.本研究表明,大气臭氧浓度升高显著影响植物菌根侵染率、AM结构形成和易提取球囊霉素蛋白的产生,特别是对臭氧敏感型植物影响更大.  相似文献   
19.
湿生环境中丛枝菌根(AM)对香蒲耐Cd胁迫的影响   总被引:4,自引:1,他引:4  
罗鹏程  李航  王曙光 《环境科学》2016,37(2):750-755
湿生植物在城市景观绿化和美化中应用越来越多,但也经常遭遇环境污染胁迫的问题.大量研究证实丛枝菌根(AM)可提高陆生植物耐受环境污染胁迫的能力,但对湿生植物的影响却鲜有认识.通过水培实验,探索接种AM真菌(Glomus etunicatum)对香蒲(Typha latifolia)耐受Cd2+(0、2.5、5.0 mg·L-1)胁迫的影响,旨在为评估菌根技术能否用于提高湿生植物抗耐环境污染胁迫的能力提供参考.结果表明,在湿生环境中AM真菌可与香蒲建立良好的共生关系,侵染率高于30%,但菌根化香蒲移入水溶液1个月后侵染率均呈下降趋势,最大下降25.5%(P0.05).AM增加了香蒲子叶的色素含量和POD酶活性,提高了根系的泌氧速率,但仅显著促进了5 mg·L-1Cd2+下香蒲的生长.虽然高浓度Cd2+抑制了香蒲的生长且侵染率下降,但AM仍能促进两个Cd2+浓度下香蒲对Cd的吸收,地上、地下部Cd含量最大增加40.24%和56.52%.本研究表明,AM具有增强湿生植物抗耐和修复环境重金属污染的潜力.  相似文献   
20.
VA菌根对土壤中DEHP降解的影响   总被引:11,自引:1,他引:11       下载免费PDF全文
以豇豆为供试植物,分别接种泡囊丛枝菌根(VAM)真菌Acaulospora lavis(光壁无梗球囊霉,菌号:34)和Glomus caledonium(苏格兰球囊霉,菌号:90036),研究VA菌根对菌根际(A)、菌丝际(B)和常规土(C)土层中不同浓度DEHP(4、20、100mg/kg)降解的影响。试验持续60d。结果表明:接种VAM真菌促进了DEHP在A、B、C土层中的降解,尤其在B层的降解,说明菌丝在DEHP降解和转移过程中起了重要作用。其中34号菌接种效果较为显著,A、B土层中的DEHP残留浓度分别比不接种最大下降25.1%和10.1%。受VAM直接影响的A、B土层中细菌、真菌、放线菌数量呈下降趋势,而在C层中呈增加趋势,A、B、C土层中土壤中性磷酸酶活性也呈现出同样变化趋势。微生物数量和中性磷酸酶活性的下降可能会影响VA菌根在DEHP降解中的作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号