首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2853篇
  免费   324篇
  国内免费   2039篇
安全科学   173篇
废物处理   226篇
环保管理   333篇
综合类   3117篇
基础理论   332篇
污染及防治   965篇
评价与监测   53篇
社会与环境   15篇
灾害及防治   2篇
  2024年   2篇
  2023年   24篇
  2022年   97篇
  2021年   112篇
  2020年   117篇
  2019年   127篇
  2018年   131篇
  2017年   126篇
  2016年   198篇
  2015年   253篇
  2014年   314篇
  2013年   328篇
  2012年   404篇
  2011年   335篇
  2010年   282篇
  2009年   300篇
  2008年   265篇
  2007年   288篇
  2006年   329篇
  2005年   215篇
  2004年   178篇
  2003年   157篇
  2002年   105篇
  2001年   80篇
  2000年   83篇
  1999年   77篇
  1998年   62篇
  1997年   53篇
  1996年   37篇
  1995年   28篇
  1994年   28篇
  1993年   23篇
  1992年   23篇
  1991年   18篇
  1990年   8篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1979年   3篇
  1978年   1篇
  1970年   1篇
排序方式: 共有5216条查询结果,搜索用时 109 毫秒
261.
辽河油田稠油泥砂综合处理工艺的研究*   总被引:5,自引:3,他引:2  
王琦  仝坤 《油气田环境保护》2009,19(4):13-16,27
稠油污泥作为含油污泥的典型代表,其成分极为复杂、处理难度极大,由于目前国内外尚无成熟工艺可完全实现其"减量化、资源化、无害化处理",给油田生产和环境保护带来了严重影响。文章分析了稠油污泥的组成及性质,根据稠油污泥来源不同实施分类预处理,利用热风干化技术将其减量,经热解气化焚烧和热能利用,为实现含油污泥无害化处理进行了有益探索。  相似文献   
262.
NaCl和KCl对厌氧污泥抑制的动力学研究   总被引:2,自引:0,他引:2  
在厌氧颗粒污泥和厌氧絮状污泥系统中,进行盐质量浓度(NaCl或KCl质量浓度,下同)对厌氧污泥抑制动力学的研究,得到不同拟合的COD降解动力学方程及参数.实验结果表明:当盐质量浓度为10~30 g/L时,KCl对厌氧污泥的COD比降解速率的抑制程度大于NaCl;当盐质量浓度由0 g/L增至10 g/L时,半速率常数逐渐增加;当盐质量浓度由10 g/L增至30 g/L时,半速率常数逐渐减小;在厌氧污泥系统中,NaCl抑制作用下的盐抑制常数高于KCl,且颗粒污泥的盐抑制常数高于絮状污泥.  相似文献   
263.
A study on concentrations of ambient particulates viz. total suspended particulate matters (TSP), respirable suspended particulate matter (RSPM) and polycyclic aromatic hydrocarbons (PAH) were carried out at six sites around the Asia’s largest, 12 MMTPA, petroleum refinery in west coast of India. PAH concentrations are correlated with each other in these sites, suggesting that they have related sources and sinks. The present article discusses the monitoring aspects such as sample collection, pretreatment and analytical methods and compares the monitored levels for assessing the source receptor distribution pattern. The main sources of RSPM and PAHs in urban air are automobile exhaust (CPCB, Polycyclic aromatic hydrocarbons (PAHs) in air and their effects on human health. “”, 2003; Manuel et al., Environmental Science and Technology, 13: 227–231, 2004) and industrial emissions like petroleum refinery (Vo-Dinh, Chemical analysis of polycyclic aromatic hydrocarbons, Wiley: New York, 1989; Wagrowaski and Hites, Environmental Science and Technology, 31: 279–282, 1997). Polycyclic aromatic hydrocarbons (PAH) are ubiquitous constituents of urban airborne particulate mostly generated by anthropogenic activities (Li et al., Environmental Science and Technology, 37:1958–2965, 2003; Thorsen et al., Environmental Science and Technology, 38: 2029–2037, 2004; Ohura et al., Environmental Science and Technology, 32: 450–455, 2004) and some of them are of major health concern mainly due to their well-known carcinogenic and mutagenic properties (Soclo et al., Marine Pollution Bulletin, 40: 387–396, 2000; Chen et al., Environment International, 28: 659–668, 2003; Larsen and Baker, Environmental Science and Technology, 32: 450–455, 2003). Limited information is available on PAHs contributions from refineries to ambient air. Hence this study would not only create a database but also provide necessary inputs towards dose-response relationship for fixing standards. Also, since it acts as precursor to green house gas, the data would be useful for climate change assessments. The objective of this article is to find out the concentration of PAHs in particulate matter around petroleum refinery and compare with their concentrations in major Indian urban centers.  相似文献   
264.
Singh RP  Agrawal M 《Chemosphere》2007,67(11):2229-2240
Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for palak (Beta vulgaris var. Allgreen H-1), a leafy vegetable and consequent heavy metal contamination, a pot experiment was conducted by mixing sewage sludge at 20% and 40% (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductance, organic carbon, total N, available P and exchangeable Na, K and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Cr, Cd, Cu, Zn and Ni concentrations of soil. Cd concentration in soil was found above the Indian permissible limit in soil at both the amendment ratios.

The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in heavy metal uptake and shoot and root concentrations of Ni, Cd, Cu, Cr, Pb and Zn in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Concentrations of Cd, Ni and Zn were more than the permissible limits of Indian standard in the edible portion of palak grown on different sewage sludge amendments ratios. Sewage sludge amendment in soil decreased root length, leaf area and root biomass of palak at both the amendment ratios, whereas shoot biomass and yield decreased significantly at 40% sludge amendment. Rate of photosynthesis, stomatal conductance and chlorophyll content decreased whereas lipid peroxidation, peroxidase activity and protein and proline contents, increased in plants grown in sewage sludge-amended soil as compared to those grown in unamended soil.

The study clearly shows that increase in heavy metal concentration in foliage of plants grown in sewage sludge-amended soil caused unfavorable changes in physiological and biochemical characteristics of plants leading to reductions in morphological characteristics, biomass accumulation and yield. The study concludes that sewage sludge amendment in soil for growing palak may not be a good option due to risk of contamination of Cd, Ni and Zn and also due to lowering of yield at higher mixing ratio.  相似文献   

265.
Otero M  Gómez X  García AI  Morán A 《Chemosphere》2007,69(11):1740-1750
Combustion of urban sewage sludge together with coal in existing infrastructures may be a sustainable management option energetically interesting for these materials, usually considered wastes. Thermogravimetric analysis was used to study the combustion of a semianthracite coal and the modifications undergone when adding a small percentage (2%, 5%, 10%) of sewage sludge. Both Differential Scanning Calorimetric analysis and Differential Thermogravimetry burning profiles showed differences between coal and sewage sludge combustion. However, the effects of adding a percentage of sewage sludge equal or smaller than 10% was hardly noticeable in terms of heat release and weight loss during the coal combustion. This was further proved by non-isothermal kinetic analysis, which was used to evaluate the Arrhenius activation energy corresponding to the co-combustion of the blends. This work shows that thermogravimetric analysis may be used as an easy rapid tool to asses the co-combustion of sewage sludge together with coal.  相似文献   
266.
The present work focuses on the fate of two cancerostatic platinum compounds (CPC), cisplatin and carboplatin, as well as of two inorganic platinum compounds, [PtCl4]2− and [PtCl6]2− in biological wastewater treatment. Laboratory experiments modelling adsorption of these compounds onto activated sludge showed promising specific adsorption coefficients KD and KOC and Freundlich adsorption isotherms. However, the adsorption properties of the investigated substances were differing significantly. Adsorption decreased following the order cisplatin > [PtCl6]2− > [PtCl4]2− > carboplatin. Log KD-values were ranging from 2.5 to 4.3 , log KOC from 3.0 to 4.7.

A pilot membrane bioreactor system (MBR) was installed in a hospital in Vienna and fed with wastewater from the oncologic in-patient treatment ward to investigate CPC-adsorption in a sewage treatment plant. During three monitoring periods Pt-concentrations were measured in the influent (3–250 μg l−1 Pt) and the effluent (2–150 μg l−1 Pt) of the treatment plant using ICP-MS. The monitoring periods (duration 30 d) revealed elimination efficiencies between 51% and 63% based on averaged weekly input–output budgets. The derived log KD-values and log KOC-values ranged from 2.4 to 4.8 and from 2.8 to 5.3, respectively. Species analysis using HPLC-ICP-MS proofed that mainly carboplatin was present as intact drug in the influent and – due to low log KD – in the effluent of the MBR.  相似文献   

267.
Goals, Scope and Background It has been observed that hydrocarbon treated wastewaters still contain high COD and a number of intermediates. This suggests that the required catabolic gene pool for further degradation might be absent in the system or, that its titer value is not significant enough. By providing the desired catabolic potential, the overall efficiency of the treatment system can be improved. This study aims to demonstrate this concept by bioaugmentation of a lab-scale reactor treating refinery wastewater with a consortium having the capacity to complement the alkB genotype to the available microbial population. Methods Two reactors were set up using activated biomass collected from a refinery treatment plant and operated at a continuous mode for a period of 8 weeks. The feed to both reactors was kept constant. Crude oil was spiked regularly. One reactor was bioaugmented with a consortium previously described for crude oil spill remediation. The efficiency of the bioaugmented reactor was demonstrated by reduced COD. The changes in the microbial population over a period of time were analyzed by RAPD. Catabolic activity of the biomass in both reactors was monitored by PCR. The presence of the catabolic loci was confirmed by Southern Hybridization. Results and Discussion 52.2% removal of COD was observed in the bioaugmented reactor while only 15.1% reduction of COD was observed in the reactor without bioaugmentation. The change in microbial population can be seen from the 4th week, which also corresponds to improved catabolic activity. The presence of the bedA locus was seen in all samples, which indicates the presence of aromatic degraders, but the appearance of the alkB locus, from the 6th week onwards, which was observed only in the samples from the bioaugmented reactor. The results suggest that the gene pool of the bioaugmented reactor has catabolic loci that can degrade accumulated intermediates, thus improving the efficiency of the system. Conclusions In this study, improvement of efficiency of bioremediation was demonstrated by addition of catabolic loci that are responsible for degradation. Bioaugmentation was carried out in biomass that was collected from an ETP (effluent treatment plant) treating hydrocarbon containing wastewater to study the strategies for improvement of the treatment system. Biostimulation, only marginally improved the efficiency, when compared to bioaugmentation. The improved efficiency was demonstrated by COD removal. The presence of the alkB locus suggests the importance of a catabolic gene pool that acts on accumulated intermediates. It is well documented that straight chain aliphatics and intermediates of aromatic compounds after ring cleavage, accumulate in refinery wastewater systems, thereby hindering further degradation of the wastewater. Supplementation of a catabolic gene pool that treats the lower pathway compounds and alkanes will improve the overall efficiency. In this study, results suggest that the alkB locus can also be used to monitor the degradative mode of the activated biomass. Recommendations and Perspective . Pollution from petroleum and petroleum products around the globe are known to have grave consequences on the environment. Bioremediation, using activated sludge, is one option for the treatment of such wastes. Effluent treatment plants are usually unable to completely degrade the wastewater being treated in the biological unit (the aerator chambers). The efficiency of degradation can be improved by biostimulation and bioaugmentation. This study demonstrates the improved efficiency of a treatment system for wastewater containing hydrocarbons by bioaugmentation of a consortium that supports degradation. Further experiments on a pilot scale are recommended to assess the use of bioaugmentation on a large scale. The use of molecular tools, like DNA probes for alkB, to monitor the system also needs to be explored.  相似文献   
268.
To gain more insight into the interactions between anaerobic bacteria and reactor performances (chemical oxygen demand-COD, 2,4 dichlorophenol-2,4 DCP removals, volatile fatty acid-VFA, and methane gas productions) and how they depended on operational conditions the microbial variations in the anaerobic granular sludge from an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 DCP was studied. The study was composed of two parts. In the first part, the numbers of methanogens and acedogens in the anaerobic granular sludge were counted at different COD removal efficiencies. The relationships between the numbers of methanogens, the methane gas production and VFA production were investigated. The COD removal efficiencies increased to 74% from 30% while the number of total acedogens decreased to 10 from 30 cfu ml(-1). The number of total methanogens and acedogens varied between 11 x 10(3) and 10 x 10(9)MPN g(-1) and 10 and 30 cfu ml(-1) as the 2,4 DCP removal efficiencies were obtained between 60% and 99%, respectively. It was seen that, as the number of total acedogens decreased, the COD removal efficiencies increased. However, the number of total methanogens increased as the COD removal efficiencies increased. Correlations between the bacterial number and with the removal efficiencies obtained in different operational conditions were investigated. From the results presented in this paper a high correlation between the number of bacteria, COD removals, methane gas percentage, 2,4 DCP removals and VFA was observed. In the second part, methanogen bacteria in the anaerobic granular sludge were identified. Microbial observations and biochemical tests were applied to identify the anaerobic microorganisms from the anaerobic granular sludge. In the reactor treating 2,4 DCP, Methanobacterium bryantii, Methanobacterium formicicum, Methanobrevibacter smithii, Methanococcus voltae, Methanosarcina mazei, Methanosarcina acetivorans, Methanogenium bourgense and Methanospirillum hungatei were identified.  相似文献   
269.
Co-combustion of dried sewage sludge and coal in a pulverized coal boiler   总被引:1,自引:0,他引:1  
More than 1.1 million tons of municipal and industrial sewage sludge is produced annually in Poland. Most of this sewage sludge is landfilled or used for recultivation and fertilization of soil. After accession of Poland to the EU, large investments are planned for wastewater treatment, so it is expected that the amount of sewage sludge produced in Poland will grow in the near future. It is well known that the combustion of sewage sludge is becoming a more and more popular utilization method of such waste. Unfortunately, the current situation in Poland makes it impossible to incinerate the sewage sludge because of a lack of incinerators. One possible solution for Poland is the co-firing of dried sewage sludge in existing coal-fired utility boilers. This article presents results of initial Polish industrial trials of dried municipal sewage sludge and hard coal co-combustion in an OP-230 pulverized coal boiler. Such a solution was shown to be technically viable and not to require changes to the existing technological system. Cocombustion of sewage sludge with coal in power plants seems to be the best solution for sludge utilization in the near future in Poland.  相似文献   
270.
针对目前国内污泥处理处置存在的问题,为实现污泥浓缩消化一体化,开发了污泥一体化强化渗滤浓缩自然干化与消化新工艺反应器,并进行了城市水厂污泥处理试验.结果表明,在有机负荷为0.8 kg VSS/(m3·d)、平均水力停留时间为8.3 d、污泥停留时间为120 d的条件下,污泥有机物去除率可达到44.4%,排泥含水率达到79.1%,污泥消化与浓缩过程起到了相互促进的作用.渗滤液须抽回至污水处理厂处理.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号