首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   824篇
  免费   98篇
  国内免费   268篇
安全科学   32篇
废物处理   93篇
环保管理   77篇
综合类   554篇
基础理论   132篇
污染及防治   188篇
评价与监测   83篇
社会与环境   21篇
灾害及防治   10篇
  2024年   1篇
  2023年   19篇
  2022年   27篇
  2021年   33篇
  2020年   24篇
  2019年   31篇
  2018年   36篇
  2017年   33篇
  2016年   34篇
  2015年   39篇
  2014年   41篇
  2013年   49篇
  2012年   29篇
  2011年   68篇
  2010年   54篇
  2009年   53篇
  2008年   62篇
  2007年   51篇
  2006年   47篇
  2005年   42篇
  2004年   38篇
  2003年   31篇
  2002年   42篇
  2001年   60篇
  2000年   30篇
  1999年   35篇
  1998年   25篇
  1997年   33篇
  1996年   28篇
  1995年   19篇
  1994年   10篇
  1993年   11篇
  1992年   13篇
  1991年   15篇
  1990年   9篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1190条查询结果,搜索用时 15 毫秒
51.
The physico-chemical absorption characteristics of ammonium-N for 10 soils from 5 profiles in York, UK, show its high potential mobility in N deposition-impacted, unfertilized, permanent grassland soils. Substantial proportions of ammonium-N inputs were retained in the solution phase, indicating that ammonium translocation plays an important role in the N cycling in, and losses from, such soils. This conclusion was further supported by measuring the ammonium-N leaching from intact plant/soil microcosms. The ammonium-N absorption characteristics apparently varied with soil pH, depth and soil texture. It was concluded for the most acid soils especially that ammonium-N leached from litter horizons could be seriously limiting the capacity of underlying soils to retain ammonium. Contrary to common opinion, more attention therefore needs to be paid to ammonium leaching and its potential role in biogeochemical N cycling in semi-natural soil systems subject to atmospheric pollution.  相似文献   
52.
The 7Be wet deposition has been intensively investigated in a semiarid region at San Luis Province, Argentina. From November 2006 to May 2008, the 7Be content in rainwater was determined in 58 individual rain events, randomly comprising more than 50% of all individual precipitations at the sampling period. 7Be activity concentration in rainwater ranged from 0.7 ± 0.3 Bq l−1 to 3.2 ± 0.7 Bq l−1, with a mean value of 1.7 Bq l−1 (sd = 0.53 Bq l−1). No relationship was found between 7Be content in rainwater and (a) rainfall amount, (b) precipitation intensity and (c) elapsed time between events. 7Be ground deposition was found to be well correlated with rainfall amount (R = 0.92). For the precipitation events considered, the 7Be depositional fluxes ranged from 1.1 to 120 Bq m−2, with a mean value of 32.7 Bq m−2 (sd = 29.9 Bq m−2). The annual depositional flux was estimated at 1140 ± 120 Bq m−2 y−1. Assuming the same monthly deposition pattern and that the 7Be content in soil decreases only through radioactive decay, the seasonal variation of 7Be areal activity density in soil was estimated. Results of this investigation may contribute to a valuable characterization of 7Be input in the explored semiarid ecosystem and its potential use as tracer of environmental processes.  相似文献   
53.
Soil and atmospheric concentrations, dry deposition and soil-air gas exchange of organochlorine pesticides (OCPs) were investigated at an industrial site in Aliaga, Izmir, Turkey. Current-use pesticides, endosulfan and chlorpyrifos, had the highest atmospheric levels in summer and winter. Summertime total (gas + particle) OCP concentrations in air were higher, probably due to increased volatilization at higher temperatures and seasonal local/regional applications of current-use pesticides. Particle deposition fluxes were generally higher in summer than in winter. Overall average dry particle deposition velocity for all the OCPs was 4.9 ± 4.1 cm s−1 (average ± SD). ΣDDXs (sum of p,p′-DDT, p,p′-DDD, and p,p′-DDE) were the most abundant OCPs in Aliaga soils (= 48), probably due to their heavy historical use and persistence. Calculated fugacity ratios and average net gas fluxes across the soil-air interface indicated volatilization for α-CHL, γ-CHL, heptachlorepoxide, cis-nonachlor, trans-nonachlor, and p,p′-DDT in summer, and for α-CHL, γ-CHL, trans-nonachlor, endosulfan sulfate, and p,p′-DDT in winter. For the remaining OCPs, soil acted as a sink during both seasons. Comparison of the determined fluxes showed that dry particle, gas-phase, and wet deposition are significant OCP input mechanisms to the soil in the study area.  相似文献   
54.
NO2 and NH3 concentrations were measured across a Special Area for Conservation in southern England, at varying distances from the local road network. Exceedances of the critical levels for these pollutants were recorded at nearly all roadside locations, extending up to 20 m away from roads at some sites. Further, paired measurements of NH3 and NO2 concentrations revealed differences between ground and tree canopy levels. At “background” sites, away from the direct influence of roads, concentrations were higher within tree canopies than at ground level; the reverse pattern was, however, seen at roadside locations. Calculations of pollutant deposition rates showed that nitrogen inputs are dominated by NH3 at roadside sites. This study demonstrates that local traffic emissions contribute substantially to the exceedance of critical levels and critical loads, and suggests that on-site monitoring is needed for sites of nature conservation value which are in close proximity to local transport routes.  相似文献   
55.
Hydrogen sulphide, ammonia, nitrogen dioxide, mercaptans and sulphur dioxide (H2S, NH3, NO2, R-SH, SO2) concentrations were measured at the location in the vicinity of the waste dump to determine the air pollution level of these pollutants prior to the operation of the Mobile Thermal Treatment Plant. Samples were collected over one year period. Seasonal differences, and the influence of meteorological parameters (temperature, relative humidity, pressure and wind direction) on the air pollution levels were studied. Results show relatively low concentrations of H2S, NO2, R-SH and SO2, while NH3 levels were higher compared to the guideline values. Good weather conditions (high air pressure and low relative humidity) are connected to long range transport of NO2, while higher temperatures result in elevated NH3 and R-SH concentrations. Because of the predominant northeast wind direction (the same as the waste dump direction), the contribution of air pollution from the direction of the waste dump at the measuring site is significant, but that does not necessarily mean that the pollutants originated from that source.  相似文献   
56.
To evaluate the acid deposition reduction negotiated for 2010 within the UNECE LRTAP Gothenburg Protocol, sulphur and nitrogen deposition time-series (1880–2100) were compared to critical loads of acidity on five French ecosystems: Massif Central basalt (site 1) and granite (2); Paris Bassin tertiary sands (3); Vosges mountains sandstone (4) and Landes eolian sands (5). The SAFE model was used to estimate the response of soil solution pH and ratio to the deposition scenario. Among the five sites, critical loads were exceeded in the past at sites 3, 4 and 5. Sites 3 and 4 were still expected to exceed in 2010, the Protocol year. Further reduction of atmospheric deposition, mainly nitrogen, would be needed to achieve recovery on these ecosystems. At sites 3, 4 and 5, the delay between the critical load exceedance and the violation of the critical chemical criterion was estimated to be 10 to 30 years in the top soil and 50 to 90 years in the deeper soil. At site 5, a recovery was expected in the top soil in 2010 with a time lag of 10 years. Unexpectedly, soil pH continued to decrease after 1980 in the deeper soil at sites 2 and 5. This time lag indicated that acidification moved down the soil profile as a consequence of slow base cation depletion by ion exchange. This delayed response of the soil solution was the result of the combination of weathering rates and vegetation uptake but also of the relative ratio between base cation deposition and acid compounds.  相似文献   
57.
During the period from July 2002 to June 2004, the chemical characteristics of the rainwater samples collected in downtown São Paulo were investigated. The analysis of 224 wet-only precipitation samples included pH and electrical conductivity, as well as major ions (Na+, $ \rm NH^{ + }_{4} During the period from July 2002 to June 2004, the chemical characteristics of the rainwater samples collected in downtown S?o Paulo were investigated. The analysis of 224 wet-only precipitation samples included pH and electrical conductivity, as well as major ions (Na+, , K+, Ca2+, Mg2+, Cl, , ) and carboxylic acids (acetic, formic and oxalic) using ion chromatography. The volume weighted mean, VWM, of the anions , and Cl was, respectively, 20.3, 12.1 and 10.7 μmol l−1. Rainwater in S?o Paulo was acidic, with 55% of the samples exhibiting a pH below 5.6. The VWM of the free H+ was 6.27 μmol l−1), corresponding to a pH of 5.20. Ammonia (NH3), determined as (VWM = 32.8 μmol l−1), was the main acidity neutralizing agent. Considering that the H+ ion is the only counter ion produced from the non-sea-salt fraction of the dissociated anions, the contribution of each anion to the free acidity potential has the following profile: (31.1%), (26.0%), CH3COO (22.0%), Cl (13.7%), HCOO (5.4%) and (1.8%). The precipitation chemistry showed seasonal differences, with higher concentrations of ammonium and calcium during autumn and winter (dry period). The marine contribution was not significant, while the direct vehicular emission showed to be relevant in the ionic composition of precipitation.  相似文献   
58.
Goal, Scope and Background Rapid urbanization and the expansion of industrial activities in the past several decades have led to large increases in emissions of pollutants in the Pearl River Delta of south China. Recent reports have suggested that industrial emission is a major factor contributing to the damages in current natural ecosystem in the Delta area. Tree barks have been used successfully to monitor the levels of atmospheric metal deposition in many areas, but rarely in China. This study aimed at determining whether atmospheric heavy metal deposition from a Pb-Zn smeltery at Qujiang, Guangdong province, could be accurately reflected both in the inner bark and the outer bark of Masson pine (Pinus massoniana L.). The impact of the emission from smeltery on the soils beneath the trees and the relationships of the concentrations between the soils and the barks were also analyzed. Methods Barks around the bole of Pinus massoniana from a pine forest near a Pb-Zn smeltery at Qujiang and a reference forest at Dinghushan natural reserve were sampled with a stainless knife at an average height of 1.5 m above the ground. Mosses and lichens on the surface barks were cleaned prior to sampling. The samples were carefully divided into the inner bark (living part) and the outer bark (dead part) in the laboratory, and dried and ground, respectively. After being dry-ashed, the powder of the barks was dissolved in HNO3. The solutions were analyzed for iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), chromium (Cr), nickel (Ni) and cobalt (Co) by inductively coupled plasmas emission spectrometry (ICP, PS-1000AT, USA) and Cadmium (Cd) and lead (Pb) by graphite furnace atomic absorption spectrometry (GFAAS, ZEENIT 60, Germany). Surface soils (0–10 cm) beneath the sample trees were also collected and analyzed for the selected metals. Results and Discussion Concentrations of the selected metals in soils at Qujiang were far above their environmental background values in the area, except for Fe and Mn, whilst at Dinghushan, they were far below their background values, except for Cd and Co. Levels of the metals, in particular Pb and Zn, in the soils beneath the sample trees at Qujiang were higher than those at Dinghushan with statistical significance. The result suggested that the pine forest soils at Qujiang had a great input of heavy metals from wet and dry atmospheric deposition, with the Pb-Zn smeltery most probably being the source. Levels of Cu, Fe, Mn, Zn, Ni and Pb at Qujiang, both in the inner and the outer bark, were statistically higher than those at Dinghushan. Higher concentrations of Pb, Fe, Zn and Cu may come from the stem-flow of elements leached from the canopy, soil splash on the 1.5 m height and sorption of metals in the mosses and lichens growing on the bark, which were direct or indirect results from the atmospheric deposition. Levels of heavy metals in the outer barks were associated well with the metal concentrations in the soil, reflecting the close relationships between the metal atmospheric deposition and their accumulation in the outer bark of Masson pine. The significant (p<0.01) correlations of Fe-Cu, Fe-Cr, Fe-Pb, Fe-Ni, Pb-Ni, and Pb-Zn in the outer barks at Qujiang again suggested a common source for the metals. The correlation only occurred between Pb and Ni, Cd and Co in the outer barks at Dinghushan, which suggested that those metals must possibly have other uncommon sources. Conclusions Atmospheric deposition of the selected metals was great at Qujiang, based on the levels in the bark of Pinus massoniana and on the concentrations in the soils beneath the trees compared with that at Dinghushan. Bark of Pinus massoniana, especially the outer bark, was an indicator of metal loading at least at the time of sampling. Recommendations and Perspectives The results from this study and the techniques employed constituted a new contribution to the development of biogeochemical methods for environmental monitoring particularly in areas with high frequency of pollution in China. The method would be of value for follow up studies aimed at the assessment of industrial pollution in other areas similar with the Pearl River Delta.  相似文献   
59.
吴淞工业区大气降尘变化规律及趋势   总被引:2,自引:1,他引:1  
吴淞工业区是重工业聚集区,烟(粉)尘的排放量非常大,造成该地区空气污染严重.为了解降尘的污染特征、变化规律及趋势,以近10 a监测数据为依据,运用方差分析等数理统计方法对工业区降尘量进行分析,检验不同季节降尘的差异并简要分析原因,使用秩相关系数法对其进行趋势分析.结果表明,工业区降尘量较混合区与清洁区明显不同; 工业区与混合区的降尘受本地源的影响较大,4季的降尘量没有明显差异,相反清洁区的4季降尘呈显著差异.10 a来工业区及其周边地区的降尘量下降了56%,说明环境综合整治取得了显著效果,使区域环境空气质量得到改善.  相似文献   
60.
The conditional time averaged gradient method was used to measure air-surface exchange of nitrogen and sulphur compounds at a semi-alpine site in Southern Norway. Dry deposition velocities were then obtained from the bi-weekly concentration gradient measurements. Annual deposition velocities were found to be 1.4, 11.8 and 4.0 mm s(-1) for NH3, HNO3 and SO2, respectively, if all data were included, and to be 10.8, 11.8 and 13.0 mm s(-1), respectively, if only positive values were included. Measured deposition velocities were compared to two sets of values estimated from a big-leaf dry deposition module applying to two different land types (short grass and forbs, and tundra), driven by measured micrometeorological parameters. The deposition module gives reasonable values for this site throughout the year, but does not reproduce the large variability as shown in the measured data. No apparent seasonal variations were found from either measurements or module estimates due to the very low productivity of the studied area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号