首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1832篇
  免费   224篇
  国内免费   709篇
安全科学   119篇
废物处理   321篇
环保管理   157篇
综合类   1416篇
基础理论   172篇
污染及防治   529篇
评价与监测   48篇
灾害及防治   3篇
  2024年   16篇
  2023年   64篇
  2022年   95篇
  2021年   108篇
  2020年   107篇
  2019年   105篇
  2018年   71篇
  2017年   59篇
  2016年   67篇
  2015年   99篇
  2014年   157篇
  2013年   120篇
  2012年   134篇
  2011年   112篇
  2010年   113篇
  2009年   111篇
  2008年   119篇
  2007年   124篇
  2006年   110篇
  2005年   121篇
  2004年   113篇
  2003年   99篇
  2002年   89篇
  2001年   67篇
  2000年   66篇
  1999年   54篇
  1998年   36篇
  1997年   45篇
  1996年   35篇
  1995年   27篇
  1994年   24篇
  1993年   17篇
  1992年   15篇
  1991年   24篇
  1990年   22篇
  1989年   19篇
  1988年   1篇
排序方式: 共有2765条查询结果,搜索用时 31 毫秒
181.
CuO / 过硫酸氢钾体系催化氧化苯酚   总被引:1,自引:0,他引:1  
本论文通过直接沉淀法制备了CuO催化剂,结合过硫酸氢钾,在常温常压下催化氧化处理苯酚模拟废水。采用电子显微镜(SEM)、X射线粉末衍射(XRD)对催化剂进行了表征,并研究了反应过程中各影响因素对降解效率的影响。实验结果表明,在催化剂用量为0.2 g/L,氧化剂浓度为0.25 g/L,pH值为7,反应时间为60 min的条件下,浓度为50 mg/L的苯酚降解率可达100%,TOC去除率达84%。进一步实验表明,催化剂具有良好的重复使用能力。最后,通过自由基捕捉实验,考察了体系中的自由基种类,并根据实验结果,讨论了CuO/过硫酸氢钾体系的催化降解机理。  相似文献   
182.
为探索生活垃圾催化热解液体产物特性变化规律,选取Na2CO3、CaO、Fe2O33种催化剂,利用固定床实验、红外分析(FT-IR)进行生活垃圾热解液体产物产率和组分特性研究.结果表明,热解终温600℃无催化剂时,生活垃圾热解液产率为39.80 wt%,添加3种催化剂后热解液产率均降低;生活垃圾分别添加1%的Na2CO3和CaO后,热解油氧含量由22.49%分别降低到20.12%和18.53%,低位热值由30.30 MJ/kg分别提高到33.79和32.74 MJ/kg;无催化剂时热解油成分为脂肪类、含氧化合物及少量芳香类混合物,加催化剂后热解油中芳香类物质峰面积比例显著增加,而含氧化合物峰面积比例降低,羟基类及羧酸类含氧化合物峰面积比例明显减少,其他含氧物峰面积比例却增加;CaO催化效果较明显,生活垃圾添加1%的CaO热解油中芳香类物质峰面积比例从4.36%增加到29.46%,含氧化合物峰面积比例由49.42%降低到23.12%,其中羟基类和羧酸类化合物峰面积比例分别由34.03%和10.65%降低到0.00%和3.34%,其他含氧化合物峰面积比例由4.73%增加到19.77%.  相似文献   
183.
负载型颗粒活性炭催化过硫酸钠氧化降解橙黄G   总被引:1,自引:0,他引:1  
通过在颗粒活性炭(GAC)上负载氧化铁,并以此作为催化剂(Fe/GAC)在常温常压下催化过硫酸钠(PS)产生硫酸根自由基降解偶氮染料橙黄G.研究了体系pH、氧化剂浓度、催化剂浓度对橙黄G去除率的影响,并且对催化剂的重复使用性能进行了测试.结果表明,在Fe/GAC/PS体系中,[OG]0=0.2 mmol/L,[GAC] =1 g/L,[PS]0=2 mmol/L,降解2h后OG去除率为99%,且有较高的矿化率;随着氧化剂浓度和催化剂浓度的增加,OG的去除效率提高;催化剂有较好的重复使用性.利用扫描电镜(SEM)对催化剂进行了表征,可以看出在活性炭上成功负载氧化铁.利用化学分子探针竞争实验鉴定催化反应中的活性物种SO4-·和OH·.  相似文献   
184.
采用不同的表面改性方法(去矿化处理、氧化改性、碱改性和还原改性)对污泥基活性炭(SCAC)进行处理,分别获得了表面金属含量低、碱位低、碱性官能团含量高及Lewis碱含量高的4种改性SCAC(SCAC-D、SCAC-S、SCAC-OH和SCAC-N),对比考察了改性前后SCAC催化臭氧氧化去除布洛芬(IBP)的效能,并探讨了SCAC催化臭氧氧化反应的主要活性位点。结果表明,5种SCAC催化活性顺序为:SCAC-N>SCAC-OH>SCAC>SCAC-S>SCAC-D;金属组分减少会直接影响SCAC的催化活性,碱位减少对其催化活性的影响相对较弱,说明SCAC表面较为丰富的金属组分是其催化臭氧氧化反应的主要活性位点;增加SCAC表面碱位(Lewis碱和碱性官能团),减少表面酸性官能团有助于提高其催化活性。  相似文献   
185.
正该专利涉及一种臭氧催化氧化-曝气生物滤池处理难生物降解废水的方法。将废水与来自臭氧发生系统的混有氧气的臭氧混合,通过设在臭氧催化反应区底部的滤板均匀进入臭氧催化氧化区;在臭氧催化氧化剂陶粒上端装填普通生物陶粒;臭氧催化氧化剂的装填高度为0.3~1.0 m;废水与臭氧在臭氧催化氧化剂陶粒的催化作用下充分氧化反应,破坏废水中难生物降解的有机  相似文献   
186.
对Mn/γ-Al2O3催化剂的制备条件及头孢合成废水的催化臭氧氧化法深度处理工艺条件进行了优化。实验结果表明:以Mn(NO32溶液为浸渍液,Mn/γ-Al2O3催化剂的最优制备条件为浸渍液浓度0.10 mol/L、浸渍时间9 h、焙烧温度400 ℃、焙烧时间2 h;在反应时间为30 min、废水pH为9.0、臭氧通量为4.6 mg/min、催化剂加入量为5 g/L的条件下,当进水COD、BOD5、ρ(氨氮)和色度分别为220~250 mg/L,8~10 mg/L,10~12 mg/L和60~70倍时,出水COD、BOD5、ρ(氨氮)和色度的平均去除率分别为53%,30%,33%和93%,出水水质满足GB 21904—2008《化学合成类制药工业水污染物排放标准》的要求。  相似文献   
187.
低温选择性催化还原(SCR)脱硝是国内外脱硝技术研发的热点,但目前主要集中在实验室小试范围,无法完全反映催化剂在实际烟气中的运行状况。在30 t/h循环流化床燃煤锅炉脱硫除尘装置后建设了2 000~5 000 m3/h的SCR脱硝中试装置,经系统研究发现,中试使用的蜂窝式催化剂对SO2和NO具有很强的吸附能力,且反应温度、喷氨速率和气体空速均会影响催化脱硝效率。为期5 d的连续运行实验结果表明,催化剂的脱硝效率一直稳定在30%~50%,并未发现明显的失活,这证明设计除雾除尘器、较大的混合器、混合器与反应器间较长的管路均有利于缓解催化剂因SO2、H2O和飞灰中的碱性金属导致的失活。  相似文献   
188.
镍基催化剂对污泥微波热解制生物气效能的影响   总被引:1,自引:0,他引:1  
为实现污水污泥减量化、无害化及资源化的目标,在微波热解污水污泥基础上,进行了镍基催化剂对制取生物气效能影响的研究。采用元素分析对污泥元素进行检测,气/质联用分析(GC-MS)和气相色谱(GC)对热解生物气的组成和含量进行测定。实验结果表明,镍基催化剂的添加对微波热解污水污泥制取生物气有较大促进作用。5%添加量与800℃热解终温条件下具有最佳催化效果:生物气中H2、CO产量最大,H2产量由29 g/kg增加到35.8 g/kg,提升23.4%,CO产量由302.7 g/kg增加到383.3 g/kg,提升26.6%;同时催化剂还能提高热能利用效率,降低热解终温,即5%添加量在700℃热解终温时可达到空白800℃时的产气效果;镍基催化剂主要在500~600℃时发挥催化作用,加快了H2和CO的释放。微波热解污泥制取的生物气具有产量大、富含H2与CO等优点,可推动污水污泥的资源化进程。  相似文献   
189.
采用自蔓延溶胶凝胶法分别制备了铁氧化物和铁铜复合氧化物催化剂,以酸性红B为降解对象,对比了单独臭氧氧化、铁氧化物和铁铜复合氧化物催化臭氧氧化对酸性红B的降解效果,考察了磁力搅拌速度(500~1 640 r/min)、溶液pH(3~11)、臭氧投加速率(3.55~28.4 mg/min)对铁铜复合氧化物催化性能的影响。结果表明,与单独臭氧氧化比较,铁氧化物和铁铜复合氧化物均能加速酸性红B的降解,促进色度和COD的去除,结合催化剂的表征结果,推断催化剂表面羟基促进臭氧分解产生.OH是其氧化性能较好的主要原因,另外,催化剂的吸附能力对催化性能也有一定影响。随着磁力搅拌速度、溶液pH、臭氧投加速率的增大,铁铜复合氧化物催化臭氧氧化酸性红B的效果越好。  相似文献   
190.
采用活性炭载体负载Cu、Fe为催化剂,在微波诱导作用下,对垃圾渗滤液污染物进行降解。实验结果表明,活性炭负载金属前经适当浓度硝酸浸泡处理后,催化剂对COD去除率提高可超过15%,过高硝酸盐浓度对COD去除有不利影响;催化剂对COD去除率随Cu、Fe金属负载量增加呈先增加后降低的趋势,催化剂对Cu、Fe的最佳负载量分别为质量百分比2.11%和1.12%。对于AC-Cu体系,在初始pH=3,H2O2投加量为4.98×103mg/L,催化剂用量为5.0×103mg/L,420 W功率下微波辐射10 min时,垃圾渗滤液COD去除率可达到84.13%;对于AC-Fe体系,当H2O2投加量为0.33×103mg/L,催化剂AC-Fe用量为2.0×104mg/L,420 W功率下微波作用10 min时,垃圾渗滤液COD去除率为60.16%。分析2种催化剂对COD去除差异的原因,可能是催化剂AC-Cu表面单分子分布的阈值比AC-Fe高。降解液的pH值对AC-Cu体系、AC-Fe体系COD去除影响存在拐点,最高COD去除率点对应的降解液pH值为3。微波辐射功率较低时,体系COD去除率随辐射功率增加而增加;辐射功率较高时,高温下垃圾渗滤液中有机硫化物分解成小分子硫化物,对催化剂活性存在一定抑制作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号