首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1823篇
  免费   287篇
  国内免费   1306篇
安全科学   190篇
废物处理   71篇
环保管理   80篇
综合类   2267篇
基础理论   174篇
污染及防治   586篇
评价与监测   20篇
社会与环境   16篇
灾害及防治   12篇
  2024年   22篇
  2023年   87篇
  2022年   130篇
  2021年   159篇
  2020年   140篇
  2019年   185篇
  2018年   117篇
  2017年   93篇
  2016年   152篇
  2015年   154篇
  2014年   212篇
  2013年   149篇
  2012年   144篇
  2011年   174篇
  2010年   151篇
  2009年   189篇
  2008年   173篇
  2007年   150篇
  2006年   169篇
  2005年   143篇
  2004年   122篇
  2003年   109篇
  2002年   58篇
  2001年   43篇
  2000年   34篇
  1999年   31篇
  1998年   28篇
  1997年   21篇
  1996年   13篇
  1995年   18篇
  1994年   16篇
  1993年   12篇
  1992年   4篇
  1991年   2篇
  1990年   8篇
  1989年   3篇
  1988年   1篇
排序方式: 共有3416条查询结果,搜索用时 125 毫秒
261.
张阳  王秀杰  王维奇  李军 《中国环境科学》2019,39(10):4369-4376
从实验室A2/O小试设备中分离纯化出一株具有高亚硝酸盐氮(NO2--N)积累率的反硝化菌株ZY04,经过16SrDNA鉴定和基因比对后,初步鉴定为Acinetobacter johnsonii.使用Logistic模型可以很理想地拟合菌株ZY04的生长特性曲线,得到生长方程常数a=0.6588,b=24.08,k=0.2413.在维持初始基质中硝酸盐氮(NO3--N)浓度为100mg/L的条件下,改变碳源乙酸钠的浓度,使碳氮比(TOC/TN)为3.5,4.5,5.5,6.5,研究菌株ZY04部分反硝化性能,发现该菌株在不同碳氮比条件下均能够保持95%以上的NO3--N降解率,在碳氮比为3.5和4.5时,17h后NO2--N积累率达到70%以上;在碳氮比为5.5和6.5时,NO2--N积累率在更快的11h后达到85%以上,碳氮比为5.5时达到最高NO2--N积累率91%.使用Aiba,Edwards和Andrews模型对菌株的基质抑制动力学进行拟合,结果表明,3种模型均可以很好的拟合NO3--N和乙酸钠对菌株的单基质抑制动力学,在双基质抑制的9种组合中,有6种模型成功拟合了NO3--N和乙酸钠对菌株的双基质抑制动力学,得到了相关半饱和参数和基质抑制参数,相关系数(R2)可以达到98%.  相似文献   
262.
采用气体循环序批式生物膜反应器(gcSBBR),构建反硝化型甲烷好氧氧化(AME-D)系统.考察了进水氮负荷的影响,发现氮负荷为0.075kg/(m3·d)时,硝酸盐氮去除率达到98.93%,其反硝化速率为74.25mg/(L·d),系统的甲烷日平均消耗量为35.91%(初期为50%);扫描电子显微镜(SEM)分析结果显示,系统中的微生物主要以短杆菌(12~18 μm)为主,并存在少量的丝状菌(长150~200μm);16S rRNA高通量测序结果显示,该系统中的甲烷氧化菌为Methylocaldum、Methylomonas、Methylococcus和Methylococcaceae_unclassified,反硝化菌为Denitratisoma、Hydrogenophaga、Azoarcus、Thiobacillus和Rhodobacter,其中主要的功能微生物为Methylocaldum、Denitratisoma和Hydrogenophaga,系统对氮的去除是由好氧甲烷氧化菌与反硝化菌协同实现.此外,系统中存在大量以甲醇和甲基胺类物质为生长基质的Methylophilaceae_uncultured(30.4%).  相似文献   
263.
利用体积为3 L的SBR反应器,以NO~-_3为电子受体,乙醇为电子供体,控制初始COD/N=5.0,考察不同盐度条件下反硝化过程NO~-_2和N_2O积累及还原过程,并对N_2O还原过程进行Monod方程拟合。结果表明:盐度增加导致系统还原速率降低。NaCl盐度由0增至20 g/L时,NO~-_3、NO~-_2和N_2O的还原速率分别由17.67,14.15,139.33 mg/(g·h)降至6.57,7.41,33.17 mg/(g·h)。N_2O还原半饱和常数随盐度的增加而增加,低盐度下氧化亚氮还原酶与底物的结合能力较强,表现出高的还原速率。反硝化初始阶段,N_2OR(N_2O还原酶)的合成速率小于NaR(NO~-_3还原酶)和NiR(NO~-_2还原酶)合成速率,导致N_2O积累。高盐度对N_2O还原的抑制远大于其对NO~-_3和NO~-_2还原活性的抑制,是导致高盐度下反硝化过程N_2O积累的主要原因。  相似文献   
264.
张萌  毕江涛 《环境工程》2019,37(8):32-36
好氧反硝化细菌可以有效降低水体氨氮含量,研究其对黑臭水体的净化效果对水环境治理和修复有着重要意义。以银川市西夏区西大沟黑臭水体为菌源,采用传统富集分离及其纯化技术筛选出1株好氧反硝化细菌BJTNXUAD010,并加入供试水体测定其净化修复效果。结果表明:菌株BJTNXUAD010对黑臭水体COD、NH3-N、水体浊度的降解率分别为72. 36%、89. 96%、67. 12%,DO增长率为141. 38%,与对照组相比差异显著(P<0. 05,P<0. 01);对其形态和生理生化特征和菌株16S r DNA序列进行分析,初步鉴定为约氏不动杆菌。该菌株对黑臭水体净化修复效果良好,是1株高效型反硝化细菌,可为今后黑臭水体净化修复微生物制剂的制备提供技术支持。  相似文献   
265.
随着全球气候变化的不断加剧,大气CO2浓度呈明显增加趋势,这将间接影响土壤-植物-微生物系统的氮循环过程.为研究典型水稻土壤反硝化细菌对CO2浓度升高的响应规律和机制,借助水稻密闭培养箱,运用实时荧光定量聚合酶链式反应(Real-Time qPCR)分子技术,设置不施氮(0 mg/kg)和常规施氮(100 mg/kg)2个处理,研究CO2倍增对水稻不同生长期土壤关键反硝化功能细菌(narG、nirK和nirS型)丰度的影响.结果表明:①在2种施氮水平,CO2倍增显著促进了水稻分蘖期、孕穗期、扬花期和成熟期水稻根系生长(增幅为2.96%~28.4%)、地上部生物量增加(增幅为7.1%~107.3%)以及成熟期籽粒干质量的增加(增幅为19.5%和38.0%),具有显著的增产效应.②反硝化细菌丰度对CO2倍增的响应与生育期及施氮水平有关,CO2倍增在2个施氮水平均抑制分蘖期反硝化细菌的繁殖,显著增加孕穗期反硝化细菌数量;在水稻扬花期,CO2倍增促进了施氮处理narG和nirS型反硝化细菌数量的增加,在成熟期抑制未施氮处理下narG、nirK和nirS型反硝化细菌的生长.另外,narG、nirK、nirS型反硝化细菌丰度整体表现为narG > nirS > nirK,且随水稻的生长,其在成熟期的丰度均呈降低趋势.nirK和nirS基因同属亚硝酸还原酶,但nirS基因丰度高于nirK,且对CO2倍增和施氮的响应有所差异.研究显示,CO2倍增可显著增加水稻生长和产量,不同施氮水平对稻田土壤反硝化细菌丰度的影响存在差异.   相似文献   
266.
在缺氧/好氧/好氧串联运行的移动床生物膜反应器(MBBR)系统中考察了温度和好氧反应器中溶解氧(DO)水平对生物膜硝化和反硝化过程氮素去除的影响,并通过高通量测序技术探究温度和DO的变化造成的MBBR系统中脱氮功能菌群结构的差异,从而在微观水平解释硝化和反硝化受温度和DO影响的生物学机理.结果表明,系统温度的升高可以同时强化生物膜硝化和反硝化过程,且好氧反应器中DO水平的提高对硝化过程有利,从而提高系统的脱氮效果.本研究中,在系统连续运行阶段,当系统温度和好氧O1反应器的DO浓度为本研究范围内的最高水平时(即温度=20~22℃、DO=5~8mg O2/L),比硝化负荷可达1.60g NH4+-N/(m2·d)以上,而相同温度范围内比反硝化负荷可高达2.84g NO3--N/(m2·d),从而使MBBR系统在该工况条件下获得了最佳的NH4+-N和TN去除率(分别达到了98.7%和85.7%).温度和DO影响硝化和反硝化的根本原因是温度和DO变化引起了脱氮功能菌群数量和群落结构的改变:当好氧反应器的DO水平下降时,硝化功能细菌的OTUs比例显著降低,尤其是异养硝化细菌的生长受到了严重的抑制;而温度的变化对反硝化细菌的影响主要体现在群落结构的变化.  相似文献   
267.
采用膜生物反应器(MBR)研究了厌氧氨氧化细菌在富集过程中的活性变化,在启动全程自养脱氮(CANON)工艺中以恒定曝气量,通过优化停曝比实现氨氧化细菌(AerAOB)和厌氧氨氧化细菌(AnAOB)协同脱氮并且有效抑制亚硝酸盐氧化菌(NOB)的活性,然后添加有机物(乙酸钠)逐步启动同步亚硝化-厌氧氨氧化耦合异养反硝化(SNAD)工艺.结果表明,在厌氧氨氧化细菌富集过程中,通过不断缩短水力停留时间(HRT)提高进水氮负荷的方式强化厌氧氨氧化细菌活性,其平均活性由0.603mgN/(h·gVSS)提高到了8.1mgN/(h·gVSS);当恒定曝气量为50mL/min,停曝比为4:10(min:min)时,AerAOB和AnAOB对氨氮的去除量分别占总氨氮去除量的58.8%和41.2%,NOB氧化亚硝态氮的量占总硝态氮生成量的15.3%,成功抑制了NOB的活性;当C/N比为0.5,调整停曝比为4:15后,反硝化过程氮去除量占总氮去除率的20.9%,厌氧氨氧化过程氮去除量占总氮去除率的79.1%,实现了AerAOB、AnAOB和反硝化细菌(DNB)协同脱氮的目的.  相似文献   
268.
在SBR反应器增加游离亚硝酸(FNA)预处理单元,投加浓度为1.2mgHNO2-N/L的FNA进行缺氧搅拌4.5h,连续处理3d,考察短程硝化污泥中FNA对氨氧化菌(AOB),丝状菌和微生物菌群结构的影响.研究表明,FNA对AOB有短时抑制作用,并能够抑制优势丝状菌Candidatus_Microthrix(微丝菌属)和Cytophagaceae(噬纤维菌)的增殖,分别由5.1%和1.1%下降到0.78%和几乎不可见.SVI从281mL/g降低到100mL/g左右.NAR能够维持在90%左右,短程硝化不受到破坏.高通量结果显示,FNA处理后微生物菌群结构多样性与丰度出现下降,但Thauera(陶厄氏菌属)和Ottowia出现了增殖,分别增加到5.58%和7.82%,同步硝化反硝化(SND)作用明显,这使得即便只有短程硝化,总氮去除率依然能达到60%以上.  相似文献   
269.
唐伟  张远  刘缨  王书平  刘志培  丁森 《环境工程》2019,37(10):126-132
通过富集培养、梯度稀释涂平板、平板划线分离等方法,从北运河底泥中筛选出6株具有异养硝化作用的细菌。其中,1株细菌HNM-4在初始ρ(NH_3-N)为140 mg/L,丁二酸钠为碳源,C/N为6的异养硝化培养基中培养48 h时,对NH3-N去除率为75. 67%。经16S rDNA测序鉴定,菌株HNM-4为假单胞菌(Pseudomonas sp.)。单因素实验表明:HNM-4发挥异养硝化作用的最适环境条件为初始ρ(NH_3-N)为140 mg/L,碳源为丁二酸钠,C/N为9~18,温度为30℃,初始pH值为7~8,盐度为0~0. 5%。在反硝化培养基中培养48 h时,HNM-4对NO_3~--N和TN去除率分别为100%和12. 05%。  相似文献   
270.
利用沸石曝气生物滤池(ZBAF)实现对含盐氨氮废水中的氨氮进行短程硝化处理。在持续103 d的运行中,探究了进水氮容积负荷(NLR)为1.714 kg/(m~3·d),NaCl投加量为0、5.0、7.5、10.0、12.0、15.0、20.0、25.0 g/L时,ZBAF的短程硝化性能。结果表明,稳定运行阶段,亚硝氮积累率(NAR)始终高于97.0%。但随着NaCl投加量增加,氨氮转化效率(ARE)从最初的80%(0 g NaCl/L)下降至34.7%(25.0 g NaCl/L),亚硝氮产率(NPR)则由1.356 kg/(m~3·d)削减为0.600 kg/(m~3·d),NaCl投加量为20.0 g/L时,ZBAF短程硝化效果不如最初的50%。取NaCl盐度投加量为0、25.0 g/L时ZBAF中部的沸石进行高通量测序,结果表明:亚硝化功能菌纲Betaproteobacteria占比分别为48.3%、21.3%。在属的水平检测到氨氧化菌(AOB) Nitrosomonas,占比由44.9%减少至14.6%,这与未投加盐度时ZBAF良好的短程硝化效果相一致,同时表明NaCl盐度的引入,削弱了ZBAF的短程硝化效果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号