首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5333篇
  免费   493篇
  国内免费   1086篇
安全科学   260篇
废物处理   172篇
环保管理   849篇
综合类   4451篇
基础理论   278篇
污染及防治   382篇
评价与监测   361篇
社会与环境   133篇
灾害及防治   26篇
  2024年   56篇
  2023年   204篇
  2022年   234篇
  2021年   302篇
  2020年   260篇
  2019年   234篇
  2018年   207篇
  2017年   214篇
  2016年   275篇
  2015年   273篇
  2014年   535篇
  2013年   330篇
  2012年   385篇
  2011年   367篇
  2010年   268篇
  2009年   255篇
  2008年   296篇
  2007年   299篇
  2006年   217篇
  2005年   211篇
  2004年   153篇
  2003年   222篇
  2002年   155篇
  2001年   175篇
  2000年   131篇
  1999年   126篇
  1998年   109篇
  1997年   67篇
  1996年   81篇
  1995年   50篇
  1994年   60篇
  1993年   43篇
  1992年   40篇
  1991年   22篇
  1990年   32篇
  1989年   24篇
排序方式: 共有6912条查询结果,搜索用时 15 毫秒
51.
为评估2010—2019年成都市机动车防控措施的减排效果,以2010年为基准年,采用排放清单法计算了各减排措施下2019年的减排量,对比分析了4种控制措施的减排效益。结果表明:成都市机动车排污总量逐年下降,2019年PM2.5、NOx、VOCs、CO、SO2和NH3的排放量分别为0.27×104、4.63×104、1.70×104、28.99×104、0.21×104和0.45×104 t,主要分布在中心城区,其中重型货车对PM2.5和NOx贡献最大,小型客车对VOCs、CO、SO2和NH3贡献最大;措施中加严标准的综合减排量最大,重点减排车型为小型客车、轻型货车、公交车等,2019年6种污染物减排量分别为0.14×104、2.27×104、1.29×104、6.77×104、0.07×104和0.38×104 t;优化城市交通管理对小型客车和摩托车的减排效果显著,2019年6种污染物减排量分别为0.04×104、0.81×104、0.38×104、2.55×104、0.05×104和0.04×104 t;淘汰高排放车辆对小型客车、轻型货车等的减排较明显,2019年6种污染物减排放量分别为0.13×104、0.98×104、0.34×104、2.62×104、0.01×104和0.007×104 t;推广清洁能源汽车的重点减排车型为出租车和公交车,虽然可有效减少PM2.5、NOx的排放,但VOCs却有小幅增加,2019年6种污染物减排放量分别为0.12×104、0.62×104、−0.13×104、0.30×104、0.004×104和0.000 5×104 t。  相似文献   
52.
53.
全国碳市场已经启动交易,第一个履约周期发电行业纳入管控。而数据质量是全国碳市场的基石,对于保障碳市场顺利运行至关重要。提高发电行业的温室气体排放核查质量,是保障发电行业数据质量的关键。燃煤排放是发电行业最主要排放源,结合发电行业的实际生产和管理特点,对发电行业燃煤排放的关键数据逐一进行分析,有针对性地提出核查的方法和要点,为提升核查质量和企业数据质量提供一定的参考借鉴。  相似文献   
54.
采用北京首都机场2014年实际CDM地面放行数据确定航空器的污染物排放量与离场排队飞机数量和落地滑入飞机数量的强关联性,构建包含这两个解释变量为影响因素的多元线性回归模型,用以估算几种常见机型在首都机场地面运行时的最小污染物排放量和绿色滑行时间。对比实际污染物排放量与最小污染物排放量,得出首都机场离场地面污染物排放量远远超过最小污染物排放量。  相似文献   
55.
再生铜冶炼是重要的重金属排放源,为掌握再生铜冶炼过程中重金属的排放特征和控制效果,通过固定源等速采样装置采集不同冶炼阶段的烟气样品,利用电感耦合等离子体质谱仪测定烟气和飞灰中重金属的浓度,并估算重金属的排放因子.结果表明,在冷却阶段烟气中重金属和颗粒物的浓度较高,经过布袋除尘器和吸附塔等污染控制装置后,重金属和颗粒物被协同脱除,脱除效率达80%~99%.排放烟气中重金属的浓度在阳极炉不同工艺段中的排序为:加料熔融段>氧化段≈还原段,且As、 Pb、 Cr、 Sn、 Sb和Cd的平均排放因子分别为2.6×103、2.4×103、2.7×103、5.6×102、34.1和9.8 mg·t-1,烟气中重金属和颗粒物的浓度均满足行业排放标准.飞灰中Cu和Zn的浓度较高,具有回收利用价值.  相似文献   
56.
我国不同区域玉米施肥的生命周期评价   总被引:9,自引:3,他引:9  
以吉林、陕西、河南、湖南、广西等玉米主产省份为例,以生产1t玉米为评价的功能单元,应用生命周期评价(LCA)方法,比较了不同生态区玉米生产过程中施肥的资源环境影响潜力.结果表明,五省环境影响综合指数大小依次为广西0.315、湖南0.309、河南0.273、陕西0.238、吉林0.183.几种资源环境影响中,潜力大小依次是富营养化、环境酸化、温室效应、土地利用和能源消耗,其中,施用氮肥引起的氨挥发是导致富营养化和酸化的主要原因.农户间玉米施肥的资源环境影响潜力差异很大,环境影响综合指数变异范围在41.2%~81.6%之间,且以湖南省最高,吉林省最低.如果将玉米追肥由撒施都改为穴施,五省的环境影响综合指数将降低8.5%~34.1%.总体而言,在目前生产条件下,吉林省具有资源环境影响较低的优势;富营养化是最主要的环境影响类型,而改进施肥方式、减少氨挥发是降低玉米施肥资源环境影响的关键技术途径.  相似文献   
57.
通过调研全国危险废物和医疗废物焚烧处置设施,对包含二噁英排放水平的设施按处置对象、炉型和处理量分类,并作系统分析和研究.结果表明现有危险废物焚烧设施烟气中二噁英的浓度比医疗废物低,达标率为74.19%;危险废物选用回转窑处置效果较好,达标率为66.67%;而医疗废物选用回转窑或热解炉,要综合考虑处置规模、生产成本和二英排放总量等因素;危险废物介于10~30 t·d-1和医疗废物介于10~20 t·d-1的处置设施要尤其注意二噁英的排放问题;医疗废物焚烧飞灰中二噁英的均值浓度为危险废物6倍以上,仅有16.67%满足填埋要求.二者烟气中二英的浓度分布以1,2,3,4,6,7,8-HpCDF、2,3,7,8-TCDF和OCDD为主.  相似文献   
58.
对某省52家焚烧企业(21家生活垃圾和31家危险废物)排放烟气数据进行了分析,结果表明,两类焚烧企业二噁英类17种单体分布有所不同,生活垃圾焚烧烟气中浓度较高的是O8CDD和O8CDF;危险废物焚烧烟气中较大的是2,3,4,7,8-P5CDF、2,3,7,8-T4CDD和1,2,3,7,8-P5CDD;两类焚烧企业二噁英类单体对I-TEQ贡献最高的都是2,3,4,7,8-P5CDF,贡献率分别为0. 7%~45%和10%~67%;两者的17种二噁英类与I-TEQ的相关性分析表明,1,2,3,7,8-P5CDF在2类焚烧炉中与I-TEQ均存在较高的相关性,其相关系数分别0. 932和0. 927,可以作为潜在的测定指示物。  相似文献   
59.
基于遥感资料的中国东部地区植被VOCs排放强度研究   总被引:1,自引:0,他引:1  
本研究充分基于遥感资料获取中国东部地区叶面积指数和叶生物量的最新信息,并广泛调研了植被VOCs排放因子的最新研究进展,以2008—2010年的植被和气象的平均状态为背景,基于MEGAN排放模型,研究了中国东部地区植被VOCs(BVOCs)排放的时空分布特征.结果表明,我国东部地区BVOCs年排放总量为11.3×106t(以C计,下同),其中异戊二烯(ISOP)、单萜烯(MON)和其它VOC(OVOC)质量分数(下同),分别为44.9%、31.5%、23.6%.BVOCs排放呈现明显的季节变化特征,春、夏、秋、冬4个季节分别占全年的11.2%、71.8%、14.1%和3.0%.空间分布上,排放高值区主要分布于大小兴安岭、长白山脉、秦岭大巴山脉、东南丘陵、海南等植被茂密的区域,年均排放强度一般在1500~6000kg·km-·2a-1之间,福建、广东、江西、浙江、湖南、湖北等省份BVOCs的排放总量与平均排放强度均较高.本研究所得到的高时空分辨率的BVOCs排放清单,可以为区域环境与气候的数值模拟研究提供基础.  相似文献   
60.
中国工业源挥发性有机物排放清单   总被引:8,自引:5,他引:8  
以工业源挥发性有机物(VOCs)为研究对象,在前期建立的工业源典型污染源分类系统基础上,对污染源系统和重要污染源排放系数进行修正和更新,采用排放系数法建立了2018年我国工业源VOCs排放清单.结果表明, 2018年我国工业源VOCs排放量为12 698 kt.含VOCs产品的使用环节贡献最大,占工业源排放总量的59%.工业涂装、印刷和包装印刷、基础化学原料制造、汽油储存与运输和石油炼制是排放量贡献最大的5大污染源,占工业源排放总量的54%;广东、山东、浙江和江苏是工业VOCs贡献最大的4个省份,排放总量占工业源VOCs总量的41%.海南、宁夏、西藏、黑龙江和新疆这5个省单位工业增加值VOCs排放强度最大,均超过了80 t·(亿元)-1.大多数省份工业VOCs排放主要来自含VOCs产品的使用环节;采用Monte Carlo模拟2018年我国工业源VOCs排放清单95%置信区间不确定度为[-32%, 48%].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号