排序方式: 共有1948条查询结果,搜索用时 14 毫秒
301.
针对一段式自养脱氮工艺普遍存在脱氮性能较差或不稳定的问题,提出了溶解氧分区控制的策略,研发了一种内外分层、溶解氧分区的新型自养脱氮反应器。通过改变反应器的进水氮负荷和调控曝气量,考察其溶解氧分区效果和脱氮性能变化,并探究长期运行过程中微生物群落结构特征。结果表明:在为期250 d的连续实验中,新型反应器能实现良好的溶解氧分区效果,可有效强化 氨氧化速率和厌氧 氨氧化速率,总氮去除率到达84.3%,氮去除速率为0.84 kg·(m 3·d) −1,自养脱氮性能得到了提升;反应器中微生物群落结构趋向单一,浮霉菌门始终维持较高丰度(7.6%~10.5%),厌氧 氨氧化菌的优势菌属则发生了由 Candidatus Kuenenia向 Candidatus Brocadia的演替,而亚硝酸盐氧化菌生长受到抑制。本研究结果可为自养脱氮工艺的应用提供参考。 相似文献
303.
生物膜技术是厌氧 氨氧化工艺应用的关键,但关于不同生境 氨氮浓度和悬浮污泥协同作用下形成的生物膜特性鲜有报道。本研究在推流式固定生物膜-活性污泥反应器中,发现在高 氨氮浓度下生长的生物膜具有较高的污泥量和厚度,但低 氨氮浓度生长的生物膜具有更高的厌氧 氨氧化菌丰度((4.91±0.65)×10 9 拷贝数·g −1, P<0.05)和厌氧 氨氧化比活性(6.53 mg·(g·h) −1)。高通量分析结果表明, Candidatus Brocadia是生物膜和悬浮污泥中主要的厌氧 氨氧化菌,在两类生物膜上的丰度未有显著差异;在低 氨氮浓度生物膜中 Candidatus Jettenia的相对丰度显著高于高 氨氮浓度的生物膜,但 Candidatus Kuenenia的丰度则相反。综合分析发现,厌氧 氨氧化菌种的附着生长与悬浮污泥群落多样性的初始定殖有关,而低丰度菌种的分布则受不同生境的影响,该结果表明不同 氨氮浓度和悬浮污泥类型的选择对生物膜的协同影响不可忽略。 相似文献
304.
考察了低盐度(以NaCl计,w/v)对厌氧 氨氧化反应器启动和运行的影响。在水力停留时间为11 h的条件下,以普通活性污泥为接种污泥,分别以进水盐度为8 g/L和进水不含盐度启动并运行厌氧 氨氧化反应器。结果表明,进水含有盐度和进水不含盐反应器启动时间分别为125 d和107 d,总氮去除率分别为(73.0±13.9)%和(78.4±3.7)%。运行阶段,进水含有盐度反应器总氮去除率始终低于进水不含盐度反应器。随回流比提升,两反应器颗粒污泥中值粒径增大。在不同回流比条件下,进水含有盐度反应器颗粒污泥中值粒径均小于进水不含盐度反应器。当回流比为7时,进水含有盐度反应器颗粒污泥EPS中多糖、蛋白质和腐殖质的含量均低于进水不含盐度反应器。两反应器EPS多糖与蛋白质的比值分别为2.8和3.1。低盐度对EGSB厌氧 氨氧化反应器的启动、运行和颗粒污泥的形成有一定的影响。 相似文献
305.
利用外加电势强化厌氧 氨氧化处理垃圾焚烧渗沥液短程硝化出水, 研究外加电势对系统脱氮及有机物去除的影响。结果表明, 在外加电势为0.06 V时, TN的去除率由43.2%提升至71.3%, COD的去除率由12.1%提升至24.4%。渗沥液中分子质量大于20 kDa的有机物在外加电势的作用下被部分降解成分子质量相对较小的有机物。外加电势也会刺激微生物产生更多的EPS且能提高其中PN/PS的比值, 这有利于厌氧 氨氧化菌在电极表面的生长和富集, 增强微生物的活性。电极生物膜中细胞色素 c(Cyt- c)、亚硝酸盐还原酶(Nir)、肼合成酶(HZS)和肼脱氢酶(HDH)4种厌氧 氨氧化菌的功能酶的活性也在外加电势的作用下得到了提升。 相似文献
306.
针对厌氧 氨氧化工艺(ANAMMOX)的进水需求以及污水中氮素的存在形态,增强前置半亚硝化工艺的运行稳定性是十分有必要的。研究发现:在温度(30±1)℃、进水pH在8.0以上、DO在0.3 mg·L-1左右、HRT=8 h的情况下;逐步增加进水 氨氮(NH4+-N)与碳酸氢盐浓度,经过19 d成功启动亚硝化反应(以亚硝硝酸盐积累率达到50%为限);为了进一步提升亚硝酸盐积累率,间歇投加5 mmol·L-1氯酸钾,后又改加联 氨作为硝化反应的选择性抑制剂,经过大约90 d的反复调试运行,使得出水中NH4+-N与亚硝态氮(NO2--N)的摩尔比近似1:1,基本符合厌氧 氨氧化工艺进水需求。通过Miseq测序结果发现: 氨氧化菌(AOB)在添加氯酸钾之后,已经成为绝对优势菌种,所占比例为54.99%;在添加联 氨之后,AOB所占比例能够达到63.92%,其中包括Nitrosomonas sp和Nitrosomonas europaea这两种亚硝化菌;只有痕量亚硝酸盐氧化菌(NOB)的存在。 相似文献
307.
针对典型SCR系统普遍存在的出口烟道与烟囱处NOx在线监测值不一致的问题与超洁净排放要求,选择2台流场与喷 氨格栅结构不同的SCR系统进行性能与优化调整实验。通过对喷 氨格栅区域烟气分布与喷 氨调整前后出口烟道内NOx分布的测试,分析了导致问题的原因与调整方案的有效性以及不同喷 氨格栅结构的优劣性。结果表明:喷 氨格栅区域烟气流场分布与区域喷 氨量的不一致性是导致不同点位NOx浓度在线监测值不一致的原因;依据调整方案能有效实现SCR出口烟道内NOx浓度均匀分布与超洁净排放的要求;改造后,能针对烟道宽度方向上烟气不均现象进行区域喷 氨量调整的喷 氨格栅结构Ⅱ与更均匀的烟气分布,促使调整后的2号机组A、B两侧出口NOx浓度分布相对标准偏差明显优于1号机组。 相似文献
308.
为了研究污泥负荷对SBR系统内活性污泥微生物中 氨氧化菌群落结构的影响,应用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术,对不同污泥负荷条件下SBR处理经投加葡萄糖调节的游泳馆污水的活性污泥中 氨氧化菌进行了分析。研究结果表明, 氨氧化菌的群落结构在不同污泥负荷条件下变化明显,在有机碳源较低的情况下生长旺盛,随着污泥负荷的提高其DGGE图谱条带数量逐渐减少,亮度逐渐减弱;在高污泥负荷环境下, 氨氧化菌受到严重抑制,多样性指数大幅下降,并从系统中消失。SBR系统内 氨氧化菌大部分为不可培养的变形菌,最常见的 氨氧化菌是β变形菌中的亚硝化螺菌和亚硝化单细胞菌。 相似文献
309.
作为区域社会经济发展的重要增长极,城市群食物生产与消费系统活性氮的释放对区域氮素循环格局有着重要影响。采用物质流分析模型,定量分析2019年长三角城市群农田种植、畜禽养殖、水产养殖和人类消费子系统的氮素流动格局,评估各子系统氮素损失的结构,阐明氮素损失的空间分布,并探究氮素损失强度的主要影响因素。结果表明,系统总体氮输入为3 472.56 Gg/a,最大氮素输入项为化肥输入;系统总体氮输出为3 061.29 Gg/a,主要表现为氮素损失,占90.9%。农田种植、畜禽养殖和水产养殖子系统的氮素利用效率分别为42.6%、30.8%和40.1%。农田种植子系统对系统氮素损失的贡献最大,为1 325.53 Gg/a,占比为47.6%;其后依次为人类消费子系统、畜禽养殖子系统和水产养殖子系统。长三角各城市氮素损失强度空间异质性较大,上海、扬州、盐城较高,分别为26.43、23.20和22.26 kg/hm2;杭州、宣城、池州较低,分别为6.14、5.83和4.55 kg/hm2。氮素损失强度空间异质性与经济、人口、农业生产和土地利用等因素的相关性具有统计学意义(P<0.05或0.01),相关系数为0.42~0.76。 相似文献
310.
短程反硝化耦合厌氧氨氧化(PD-A)工艺外加碳源和曝气成本较低、NO2 −生成稳定高效、总氮去除率高,并且可以减少温室气体N2O的排放,是一种新型的生物脱氮工艺。现有关于PD-A的研究多以水质条件单一的模拟废水为对象,针对实际废水的研究尚少。分析了PD-A工艺的机制与特点,通过对比核心功能菌短程反硝化菌和厌氧氨氧化菌的最佳生长条件,并结合现有研究提出PD-A工艺运行的优化策略,继而分析了PD-A工艺在实际废水中的应用案例。结果表明,优化COD/NO3 −、接种不同结构的污泥和添加生物膜载体等有利于工艺高效稳定地运行;PD-A工艺在实际生活污水、养殖废水、高硝酸盐废水的处理中实现了较高的脱氮率,说明其处理实际废水具有可行性。最后,对PD-A工艺的发展进行展望,认为应以实际废水为处理对象,进一步研究系统内核心菌群的协同作用机制和混合生物脱氮调控方式,以提升工艺的稳定性及碳氮协同处理效率。 相似文献
|